The Plasma Environment Associated with Equatorial Ionospheric Irregularities

Date

ORCID

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Geophysical Union

item.page.doi

Abstract

We examine the density structure of equatorial depletions referred to here as equatorial plasma bubbles (EPBs). Data recorded by the Ion Velocity Meter as part of the Coupled Ion Neutral Dynamics Investigation (CINDI) aboard the Communication/Navigation Outage Forecasting System (C/NOFS) satellite are used to study EPBs from 1600 to 0600 h local time at altitudes from 350 to 850 km. The data are taken during the 7 years from 2008 to 2014, more than one half of a magnetic solar cycle, that include solar minimum and a moderate solar maximum. Using a rolling ball algorithm, EPBs are identified by profiles in the plasma density, each having a depth measured as the percent change between the background and minimum density (ΔN/N). During solar moderate activity bubbles observed in the topside postsunset sector are more likely to have large depths compared to those observed in the topside postmidnight sector. Large bubble depths can be observed near 350 km in the bottomside F region in the postsunset period. Conversely at solar minimum the distribution of depths is similar in the postsunset and postmidnight sectors in all longitude sectors. Deep bubbles are rarely observed in the topside postsunset sector and never in the bottomside above 400 km in altitude. We suggest that these features result from the vertical drift of the plasma for these two solar activity levels. These drift conditions affect both the background density in which bubbles are embedded and the growth rate of perturbations in the bottomside where bubbles originate.

Description

Keywords

Ionosphere, Plasma density--Measurement

item.page.sponsorship

National Aeronautics and Space Administration. Grant Number: NNX15AT31G

Rights

©2018 American Geophysical Union. All Rights Reserved.

Citation