Investigation of the Hydrothermal Aging of an Mn-Based Mullite SmMn₂O₅ Catalyst of NO Oxidation

dc.contributor.ORCID0000-0003-2698-7774 (Cho, K)en_US
dc.contributor.ORCID0000-0001-5931-212X (Wang, W)en_US
dc.contributor.VIAF369148996084659752200 (Cho, K)en_US
dc.contributor.authorXue, L.en_US
dc.contributor.authorXiong, K.en_US
dc.contributor.authorChen, H.en_US
dc.contributor.authorCho, Kyeongjaeen_US
dc.contributor.authorWang, Weichaoen_US
dc.contributor.utdAuthorCho, Kyeongjaeen_US
dc.contributor.utdAuthorWang, Weichaoen_US
dc.date.accessioned2018-09-24T15:33:37Z
dc.date.available2018-09-24T15:33:37Z
dc.date.created2017-10-20
dc.date.issued2017-10-20en_US
dc.description.abstractHydrothermal aging tests are important to carry out when evaluating the hydrothermal durability of heterogeneous catalysts in vehicle exhaust emission. Here, we explored the effect of aging on an efficient Mn-based mullite catalyst (SmMn₂O₅) of NO oxidation. The mullite catalyst was prepared via the hydrothermal method and was subsequently aged in air with a 10% H2O stream at 750 °C for 16 hours. The fresh and aged catalysts were structurally characterized using Powder X-ray diffraction(XRD), Raman, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), high resolution-transmission electron microscope (HR-TEM), Brunauer-Emmett-Teller (BET) and temperature programmed desorption (TPD). For the performance evaluations, the samples were placed into a U-shape reactor furnace, and NO and NO2 concentrations were in situ recorded with an NOx analyzer. In contrast to fresh mullite, the aged sample showed a 25 °C higher light-off temperature and 11% conversion loss at its maximum conversion temperature of 300 °C. O2-TPD of the aged sample displayed a large decrease of the desorption area, consistent with an ∼3-fold loss of the BET specific surface area. Moreover, HRTEM, XPS and Raman spectroscopy results together indicated that a small portion of the mullite decomposed into perovskite SmMnO3 and Mn2O3, which further reduced the total quantity of Mn active sites. The reduction of the BET surface area and mullite decomposition together caused the decrease of the catalytic performance. We therefore expect maintaining the specific surface area to be important for preventing the loss of catalytic performance during the hydrothermal aging process. © 2017 The Royal Society of Chemistry.en_US
dc.description.departmentErik Jonsson School of Engineering and Computer Scienceen_US
dc.description.sponsorshipNational Key Research and Development Program (Grant No. 2016YFB0901600), National Natural Science Foundation of China (21573117, and 11404172), the National Basic Research Program of China (973 Program with No. 2014CB931703).en_US
dc.identifier.bibliographicCitationXue, L., K. Xiong, H. Chen, K. Cho, et al. 2017. "Investigation of the hydrothermal aging of an Mn-based mullite SmMn₂O₅ catalyst of NO oxidation." RSC Advances 7(77), doi:10.1039/c7ra09306cen_US
dc.identifier.issn2046-2069en_US
dc.identifier.issue77en_US
dc.identifier.urihttp://hdl.handle.net/10735.1/6118
dc.identifier.volume7en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.urihttp://dx.doi.org/10.1039/c7ra09306cen_US
dc.rightsCC BY-NC 3.0 (Attribution-NonCommercial) Licenseen_US
dc.rights©2017 The Royal Society of Chemistry.en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/en_US
dc.source.journalRSC Advancesen_US
dc.subjectCatalystsen_US
dc.subjectManganeseen_US
dc.subjectMulliteen_US
dc.subjectNitrogen oxidesen_US
dc.subjectSamariumen_US
dc.subjectScanning electron microscopyen_US
dc.subjectSilicate mineralsen_US
dc.subjectSurfaces--Areas and volumesen_US
dc.subjectX-rays--Diffractionen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subjectAutomobiles--Motors--Exhaust gasen_US
dc.titleInvestigation of the Hydrothermal Aging of an Mn-Based Mullite SmMn₂O₅ Catalyst of NO Oxidationen_US
dc.type.genrearticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JECS-3651-8294.21.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format
Description:
Article

Collections