Observations of the Generation of Eastward Equatorial Electric Fields near Dawn

Date

2014-09-19

ORCID

Journal Title

Journal ISSN

Volume Title

Publisher

Copernicus Gesellschaft Mbh

item.page.doi

Abstract

We report and discuss interesting observations of the variability of electric fields and ionospheric densities near sunrise in the equatorial ionosphere made by instruments onboard the Communications/Navigation Outage Forecasting System (C/NOFS) satellite over six consecutive orbits. Electric field measurements were made by the Vector Electric Field Instrument (VEFI), and ionospheric plasma densities were measured by Planar Langmuir Probe (PLP). The data were obtained on 17 June 2008, a period of solar minimum conditions. Deep depletions in the equatorial plasma density were observed just before sunrise on three orbits, for which one of these depletions was accompanied by a very large eastward electric field associated with the density depletion, as previously described by de La Beaujardiere et al. (2009), Su et al. (2009) and Burke et al. (2009). The origin of this large eastward field (positive upward/meridional drift), which occurred when that component of the field is usually small and westward, is thought to be due to a large-scale Rayleigh-Taylor process. On three subsequent orbits, however, a distinctly different, second type of relationship between the electric field and plasma density near dawn was observed. Enhancements of the eastward electric field were also detected, one of them peaking around 3 mV m⁻¹, but they were found to the east (later local time) of pre-dawn density perturbations. These observations represent sunrise enhancements of vertical drifts accompanied by eastward drifts such as those observed by the San Marco satellite (Aggson et al., 1995). Like the San Marco measurements, the enhancements occurred during winter solstice and low solar flux conditions in the Pacific longitude sector. While the evening equatorial ionosphere is believed to present the most dramatic examples of variability, our observations exemplify that the dawn sector can be highly variable as well.

Description

Keywords

Ionosphere, Electric fields, Plasma drift, Sunrise, Communications/Navigation Outage Forecasting System (C/NOFS)

item.page.sponsorship

US National Science Foundation (no. ATM-0551107; AGS-1261107)

Rights

CC BY 3.0 (Attribution), ©2014 The Authors

Citation