Caustics of Poncelet Polygons and Classical Extremal Polynomials

Date

2019-02-05

ORCID

Journal Title

Journal ISSN

Volume Title

Publisher

Pleiades Publishing Inc

item.page.doi

Abstract

A comprehensive analysis of periodic trajectories of billiards within ellipses in the Euclidean plane is presented. The novelty of the approach is based on a relationship recently established by the authors between periodic billiard trajectories and extremal polynomials on the systems of d intervals on the real line and ellipsoidal billiards in d-dimensional space. Even in the planar case systematically studied in the present paper, it leads to new results in characterizing n periodic trajectories vs. so-called n elliptic periodic trajectories, which are n-periodic in elliptical coordinates. The characterizations are done both in terms of the underlying elliptic curve and divisors on it and in terms of polynomial functional equations, like Pell's equation. This new approach also sheds light on some classical results. In particular, we connect the search for caustics which generate periodic trajectories with three classical classes of extremal polynomials on two intervals, introduced by Zolotarev and Akhiezer. The main classifying tool are winding numbers, for which we provide several interpretations, including one in terms of numbers of points of alternance of extremal polynomials. The latter implies important inequality between the winding numbers, which, as a consequence, provides another proof of monotonicity of rotation numbers. A complete catalog of billiard trajectories with small periods is provided for n = 3, 4, 5, 6 along with an effective search for caustics. As a byproduct, an intriguing connection between Cayley-type conditions and discriminantly separable polynomials has been observed for all those small periods.

Description

Due to copyright restrictions and/or publisher's policy full text access from Treasures at UT Dallas is limited to current UTD affiliates (use the provided Link to Article).

Keywords

Poncelet's theorem, Billiards, Elliptical, Cayley conditions, Polynomials, Extremal, Curves, Elliptic, Trajectories (Mechanics), Caustics (Optics), Pell's equation, Chebyshev polynomials, Zolotarev polynomials, Akhiezer polynomials, Billiards, Mathematics, Mechanics, Physics

item.page.sponsorship

Serbian Ministry of Education, Science, and Technological Development, Project 174020; Australian Research Council, Project DP190101838

Rights

©2019 Pleiades Publishing, Ltd.

Citation