Low-Temperature Microstructural Studies on Superconducting CaFe₂As₂

Date

2019-04-23

ORCID

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group

item.page.doi

Abstract

Undoped CaFe₂As₂ (Ca122) can be stabilized in two slightly different non-superconducting tetragonal phases, PI and PII, through thermal treatments. Upon proper annealing, superconductivity with a T_{c} up to 25 K emerges in the samples with an admixture of PI and PII phases. Systematic low-temperature X-ray diffraction studies were conducted on undoped Ca122 samples annealed at 350 °C over different time periods. In addition to the diffraction peaks associated with the single-phase aggregation of PI and PII, a broad intermediate peak that shifts with annealing time was observed in the superconducting samples only. Our simulation of phase distribution suggests that the extra peak is associated with the admixture of PI and PII on the nanometer scale. High-resolution transmission electron microscopy confirms the existence of these nano-scale phase admixtures in the superconducting samples. These experimental results and simulation analyses lend further support for our conclusion that interfacial inducement is the most reasonable explanation for the emergence of superconductivity in undoped Ca122 single crystals. ©2019, The Author(s).

Description

Keywords

Transmission Electron Microscopy, (High resolution), Human, Tissues, Human, Low temperatures, Superconductivity, X-ray diffraction imaging

item.page.sponsorship

U.S. Air Force Office of Scientific Research Grant No. FA9550-15-1-0236; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract No. DE-SC0012704.

Rights

CC BY 4.0 (Attribution), ©2019 The Authors

Citation

Collections