SoH-Aware Reconfiguration in Battery Packs

Date

ORCID

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

item.page.doi

Abstract

Cell imbalance, a notorious but widely found issue, degrades the performance and reliability of large battery packs, especially for cells connected in series where their overall capacity delivery is dominated by the weakest cell. In this paper, we exploit the emerging reconfigurable battery packs to mitigate the cell imbalance via the joint consideration of system reconfigurability and State-of-Health (SoH) of cells. Via empirical measurements and validation, we observe that more capacity can be delivered when cells with similar SoH are connected in series during discharging. Based on this observation, we propose two SoH-aware reconfiguration algorithms focusing on fully and partially reconfigurable battery packs, and prove their (near) optimality in capacity delivery. We evaluate the proposed reconfiguration algorithms analytically, experimentally, and via emulations, showing 10%-60% improvement in capacity delivery when compared with SoH-oblivious approaches, especially when facing severe cell imbalance. © 2010-2012 IEEE.

Description

Full text access from Treasures at UT Dallas is restricted to current UTD affiliates (use the provided Link to Article).

Keywords

Electric batteries, Electric discharges, Battery management systems, Algorithms

item.page.sponsorship

This work was supported in part by the NSF under Grant CNS-1329702, Grant CNS-1446117, and Grant CNS-1503590, and in part by the State Key Laboratory of Industrial Control Technology under Grant ICT1600206 and Grant NSFC-61402372.

Rights

©2016 IEEE

Citation

Collections