The Network Architecture of Cortical Processing in Visuo-Spatial Reasoning
Date
ORCID
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.doi
Abstract
Reasoning processes have been closely associated with prefrontal cortex (PFC), but specifically emerge from interactions among networks of brain regions. Yet it remains a challenge to integrate these brain-wide interactions in identifying the flow of processing emerging from sensory brain regions to abstract processing regions, particularly within PFC. Functional magnetic resonance imaging data were collected while participants performed a visuo-spatial reasoning task. We found increasing involvement of occipital and parietal regions together with caudal-rostral recruitment of PFC as stimulus dimensions increased. Brain-wide connectivity analysis revealed that interactions between primary visual and parietal regions predominantly influenced activity in frontal lobes. Caudal-to-rostral influences were found within left-PFC. Right-PFC showed evidence of rostral-to-caudal connectivity in addition to relatively independent influences from occipito-parietal cortices. In the context of hierarchical views of PFC organization, our results suggest that a caudal-to-rostral flow of processing may emerge within PFC in reasoning tasks with minimal top-down deductive requirements.