Can Oral Bacteria and Mechanical Fatigue Degrade Zirconia Dental Implants in Vitro?

Date

2019-05-15

ORCID

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

item.page.doi

Abstract

Zirconia (ZrO₂) is an emerging alternative to titanium for dental implant systems due to its material properties including high mechanical strength and chemical stability. However, oral environmental factors such as bacterial adhesion and mechanical fatigue may trigger low-temperature degradation of ZrO₂, leading to reduced mechanical strength and potential implant fracture. Although failure modes of ZrO₂ in orthopedic applications have been studied, they have yet to be thoroughly investigated in the context of dental implant systems. Thus, the goal of the present study was to assess the surface of ZrO₂ dental implants for signs of degradation after exposure to oral bacteria and oral bacteria in combination with mechanical fatigue. ZrO₂ dental implants were subjected to 30-day immersion in (i) early or (ii) late colonizing oral bacteria or (iii) were mechanically loaded for 2 × 106 cycles with oral bacteria in circulation. Optical microscopy, Raman microscopy, and X-ray photoelectron spectroscopy (XPS) were used to evaluate the surface morphology, phase composition, and chemical composition, respectively. Post-immersion, all implants exhibited minimal changes in surface features, and all loaded implants survived cyclic fatigue tests. All implants had <1% monoclinic phase at the collar, junction, and screw regions, excluding the screw threads, for which monoclinic phase was significantly higher but <10%. XPS revealed an increase in carbon- and nitrogen-based organic debris on the implants exposed to early colonizers as compared to those immersed in late colonizers or synergistically with mechanical loading. Within the limitations of the present study, ZrO₂ is a suitable alternative material for dental implant systems based on its ability to resist both physical and chemical degradation imposed by oral bacteria and applied cyclic loads. © 2019 American Chemical Society.

Description

Due to copyright restrictions and/or publisher's policy full text access from Treasures at UT Dallas is limited to current UTD affiliates (use the provided Link to Article).
Supplementary material is available on publisher's website. Use the DOI link below.

Keywords

Biodegradation, Oxides, Dental implants, Bacterial adhesion, Dental implants, Zirconium oxide, Metals in surgery, Screw-threads, Metals—Thermal fatigue, X ray photoelectron spectroscopy

item.page.sponsorship

International Team for Implantology (ITI), Basel, Switzerland, Grant No. 1175_2016; National Science Foundation Graduate Research Fellowship under Grant No. 1746053

Rights

©2019 American Chemical Society

Citation