On the New Continuous Matrix Product Ansatz
Date
ORCID
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.doi
Abstract
The fertile new field of quantum information theory is inspiring new ways to study correlated quantum systems by providing fresh insights into the structure of their Hilbert spaces. One of the latest developments in this direction was the extension of the ubiquitous matrix-product-state constructions, epitomized by the density-matrix renormalization-group algorithm, to continuous space-time; so as to be able to describe low-dimensional field theories within a variational approach. Following the earlier success achieved for bosonic theories, we present the first implementation of a continuous matrix product state (cMPS) for spinfull non-relativistic fermions in 1D. We propose a construction of variational matrices with an efficient parametrization that respects the translational symmetry of the problem (without being overly constraining) and readily meets the regularity conditions that arise from removing the ultraviolet divergences in the kinetic energy. We tested the validity of our approach on an interacting spin-1/2 system with spin imbalance. We observe that the ansatz correctly predicts the ground-state magnetic properties for the attractive spin-1/2 Fermi gas, including a phase-oscillating pair correlation function in the partially polarized regime (the 1D correlate of the FFLO state). We shall also discuss how to generalize the cMPS ansatz to other situations.