Multi-Physics Simulation of Metal Printing at Micro/Nanoscale Using Meniscus-Confined Electrodeposition: Effect of Nozzle Speed and Diameter

dc.contributor.authorMorsali, Seyedrezaen_US
dc.contributor.authorDaryadel, Soheilen_US
dc.contributor.authorZhou, Zhongen_US
dc.contributor.authorBehroozfar, Alien_US
dc.contributor.authorBaniasadi, Mahmouden_US
dc.contributor.authorMoreno, Salvadoren_US
dc.contributor.authorQian, Dongen_US
dc.contributor.authorMinary-Jolandan, Majiden_US
dc.contributor.utdAuthorMorsali, Seyedrezaen_US
dc.contributor.utdAuthorDaryadel, Soheilen_US
dc.contributor.utdAuthorZhou, Zhongen_US
dc.contributor.utdAuthorBehroozfar, Alien_US
dc.contributor.utdAuthorBaniasadi, Mahmouden_US
dc.contributor.utdAuthorMoreno, Salvadoren_US
dc.contributor.utdAuthorQian, Dongen_US
dc.contributor.utdAuthorMinary-Jolandan, Majiden_US
dc.date.accessioned2018-08-31T15:00:09Z
dc.date.available2018-08-31T15:00:09Z
dc.date.created2017-06-07en_US
dc.date.issued2018-08-31
dc.description.abstractMeniscus-confined electrodeposition (MCED) is a solution-based, room temperature process for 3D printing of metals at micro/nanoscale. In this process, a meniscus (liquid bridge or capillary) between a nozzle and a substrate governs the localized electrodeposition process, which involves multiple physics of electrodeposition, fluid dynamics, mass, and heat transfer. We have developed a multiphysics finite element (FE) model to investigate the effects of nozzle speed (v N) and nozzle diameter (D0) in the MCED process. The simulation results are validated with experimental data. Based on theoretical approach and experimental observation, the diameter of the deposited wire is in the range of 0.5-0.9 times of the nozzle diameter. The applicable range for vN for various nozzle diameters is computed. The results showed that the contribution of migration flux to total flux remains nearly constant (∼50%) for all values of pipette diameter in the range examined (100 nm-5 μm), whereas the contribution of diffusion and evaporation fluxes to total flux increase and decrease with the increasing pipette diameter, respectively. Results of this multiphysics study can be used to guide the experiment for optimal process conditions. © 2017 Author(s).en_US
dc.description.departmentErik Jonsson School of Engineering and Computer Scienceen_US
dc.description.departmentAlan G. MacDiarmid NanoTech Instituteen_US
dc.description.sponsorshipU.S. Office of Naval Research under Young Investigator Program (Award No. N00014-15-1-2795).en_US
dc.identifier.bibliographicCitationMorsali, S., S. Daryadel, Z. Zhou, A. Behroozfar, et al. 2017. "Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of nozzle speed and diameter." Journal of Applied Physics 121(21), doi:10.1063/1.4984910en_US
dc.identifier.issn0021--8979en_US
dc.identifier.issue21en_US
dc.identifier.urihttp://hdl.handle.net/10735.1/6041
dc.identifier.volume121en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Physics Incen_US
dc.relation.urihttp://dx.doi.org/10.1063/1.4984910en_US
dc.rights©2017 American Institute of Physics.en_US
dc.source.journalJournal of Applied Physicsen_US
dc.subjectThree-dimensional printingen_US
dc.subjectElectroformingen_US
dc.subjectElectrodesen_US
dc.subjectHeat—Transmissionen_US
dc.subjectNozzlesen_US
dc.subjectFinite element methoden_US
dc.titleMulti-Physics Simulation of Metal Printing at Micro/Nanoscale Using Meniscus-Confined Electrodeposition: Effect of Nozzle Speed and Diameteren_US
dc.type.genrearticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JECS-3878-8204.69.pdf
Size:
2.64 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
AMERICAN INSTITUTE OF PHYSICS.pdf
Size:
304.78 KB
Format:
Adobe Portable Document Format
Description: