Measurement of the Soft-Drop Jet Mass in pp Collisions at √s =13 TeV with the ATLAS Detector


Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log_{10}ρ², where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb⁻¹ of √s = 13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations. © 2018 CERN, for the ATLAS Collaboration.



Hadrons, Monte Carlo method, Large Hadron Collider (France and Switzerland), Proton-proton interactions, Standard model (Nuclear physics), Tellurium compounds, Transverse momentum


CC BY 4.0 (Attribution), ©201 CERN, for the ATLAS Collaboration