Exact Solutions for a Generalized KdV-MKdV Equation with Variable Coefficients

dc.contributor.authorTang, Boen_US
dc.contributor.authorWang, Xueminen_US
dc.contributor.authorFan, Yingzheen_US
dc.contributor.authorQu, Junfengen_US
dc.contributor.utdAuthorWang, Xuemin
dc.date.accessioned2016-09-23T20:36:12Z
dc.date.available2016-09-23T20:36:12Z
dc.date.created2015-12-27-
dc.description.abstractBy using solutions of an ordinary differential equation, an auxiliary equation method is described to seek exact solutions of variable-coefficient KdV-MKdV equation. As a result, more new exact nontravelling solutions, which include soliton solutions, combined soliton solutions, triangular periodic solutions, Jacobi elliptic function solutions, and combined Jacobi elliptic function solutions, for the KdV-MKdV equation are obtained. It is shown that the considered method provides a very effective, convenient, and powerful mathematical tool for solvingmany other nonlinear partial differential equations with variable coefficients inmathematical physics.en_US
dc.description.sponsorshipHubei Provincial Department of Education (B2015146)en_US
dc.identifier.bibliographicCitationTang, Bo, Xuemin Wang, Yingzhe Fan, and Junfeng Qu. 2016. "Exact solutions for a generalized KdV-MKdV equation with variable coefficients." Mathematical Problems in Engineering 2016, doi: 10.1155/2016/5274243en_US
dc.identifier.issn1024-123Xen_US
dc.identifier.urihttp://hdl.handle.net/10735.1/5046
dc.publisherHindawi Publishing Corporationen_US
dc.relation.urihttp://dx.doi.org/10.1155/2016/5274243
dc.rightsCC BY 4.0 (Attribution) Licenseen_US
dc.rights©2016 The Authorsen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.source.journalMathematical Problems in Engineeringen_US
dc.subjectJacobi formsen_US
dc.subjectDifferential equations, Nonlinearen_US
dc.subjectKorteweg-de Vries equationen_US
dc.subjectSolitonsen_US
dc.subjectElliptic functionsen_US
dc.titleExact Solutions for a Generalized KdV-MKdV Equation with Variable Coefficientsen_US
dc.type.genrearticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JECS-2061-4688.82.pdf
Size:
3.54 MB
Format:
Adobe Portable Document Format
Description:
Article