Dynamic Classifier Selection Using Spectral-Spatial Information for Hyperspectral Image Classification

dc.contributor.authorSu, Hongjunen_US
dc.contributor.authorYong, Binen_US
dc.contributor.authorDu, Peijunen_US
dc.contributor.authorLiu, Haoen_US
dc.contributor.authorChen, Chenen_US
dc.contributor.authorLiu, Kuien_US
dc.date.accessioned2015-09-23T16:57:06Z
dc.date.available2015-09-23T16:57:06Z
dc.date.created2014-08-22
dc.description.abstractThis paper presents a dynamic classifier selection approach for hyperspectral image classification, in which both spatial and spectral information are used to determine a pixel’s label once the remaining classified pixels’ neighborhood meets the threshold. For volumetric texture feature extraction, a volumetric gray level co-occurrence matrix is used; for spectral feature extraction, a minimum estimated abundance covariance-based band selection is used. Two hyperspectral remote sensing datasets, HYDICE Washington DC Mall and AVIRIS Indian Pines, are employed to evaluate the performance of the developed method. The classification accuracies of the two datasets are improved by 1.13% and 4.47%, respectively, compared with the traditional algorithms using spectral information. The experimental results demonstrate that the integration of spectral information with volumetric textural features can improve the classification performance for hyperspectral images.en_US
dc.description.sponsorship"This paper was partially supported by National Natural Science Foundation of China (Grant Nos. 41201341, 51379056), the Open Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (Grant No. 12R02), Key Laboratory of Satellite Mapping Technology and Application, National Administration of Surveying, Mapping and Geoinformation (KLSMTA-201301), and Key Laboratory of Advanced Engineering Surveying of National Administration of Surveying, Mapping and Geoinformation (Grant No. TJES1301)."en_US
dc.identifier.bibliographicCitationSu, Hongjun, Bin Yong, Peijun Du, Hao Liu, et al. 2014. "Dynamic classifier selection using spectral-spatial information for hyperspectral image classification." Journal of Applied Remote Sensing 8(085095): doi:10.1117/1.JRS.8.085095.en_US
dc.identifier.issn1931-3195en_US
dc.identifier.urihttp://hdl.handle.net/10735.1/4607
dc.identifier.volume8en_US
dc.relation.urihttp://dx.doi.org/10.1117/1.JRS.8.085095en_US
dc.rights©2014 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.en_US
dc.source.journalJournal of Applied Remote Sensingen_US
dc.subjectDynamic classifier selectionen_US
dc.subjectHyperspectral image classificationen_US
dc.subjectApplied remote sensingen_US
dc.titleDynamic Classifier Selection Using Spectral-Spatial Information for Hyperspectral Image Classificationen_US
dc.type.genrearticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JECS-2061-272029.39.pdf
Size:
6.33 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SPIE - JOURNALS AND PROCEEDINGS.pdf
Size:
25.4 KB
Format:
Adobe Portable Document Format
Description: