Bio-Inspired, Moisture-Powered Hybrid Carbon Nanotube Yarn Muscles

dc.contributor.ISNI0000 0003 5232 4253 (Baughman, RH)en_US
dc.contributor.ORCID0000-0002-0166-3127 (Lepró, X)en_US
dc.contributor.authorKim, Shi Hyeongen_US
dc.contributor.authorKwon, Cheong Hoonen_US
dc.contributor.authorPark, Karamen_US
dc.contributor.authorMun, Tae Jinen_US
dc.contributor.authorLepro, Xavieren_US
dc.contributor.authorBaughman, Ray H.en_US
dc.contributor.authorSpinks, Geoffrey M.en_US
dc.contributor.authorKim, Seon Jeongen_US
dc.contributor.utdAuthorLepró, Xavieren_US
dc.contributor.utdAuthorBaughman, Ray H.en_US
dc.date.accessioned2018-05-15T22:38:53Z
dc.date.available2018-05-15T22:38:53Z
dc.date.created2016-03-14
dc.descriptionIncludes supplementary materialen_US
dc.description.abstractHygromorph artificial muscles are attractive as self-powered actuators driven by moisture from the ambient environment. Previously reported hygromorph muscles have been largely limited to bending or torsional motions or as tensile actuators with low work and energy densities. Herein, we developed a hybrid yarn artificial muscle with a unique coiled and wrinkled structure, which can be actuated by either changing relative humidity or contact with water. The muscle provides a large tensile stroke (up to 78%) and a high maximum gravimetric work capacity during contraction (2.17 kJ kg⁻¹), which is over 50 times that of the same weight human muscle and 5.5 times higher than for the same weight spider silk, which is the previous record holder for a moisture driven muscle. We demonstrate an automatic ventilation system that is operated by the tensile actuation of the hybrid muscles caused by dew condensing on the hybrid yarn. This self-powered humidity-controlled ventilation system could be adapted to automatically control the desired relative humidity of an enclosed space.en_US
dc.description.sponsorshipCreative Research Initiative Center for Self-powered Actuation and the Korea-US Air Force Cooperation Program Grant (no. 2013K1A3A1A32035592); Air Force Office of Scientific Research (grant nos. FA9550-15-1-0089, FA2386-13-1- 4119); Robert A. Welch Foundation grant (no. AT-0029). Additional support was from the Australian Research Council Discovery Grant (DP110101073).en_US
dc.identifier.bibliographicCitationKim, Shi Hyeong, Cheong Hoon Kwon, Karam Park, Tae Jin Mun, et al. 2016. "Bio-inspired, moisture-powered hybrid carbon nanotube yarn muscles." Scientific Reports 6(23016), doi: 10.1038/srep23016en_US
dc.identifier.issn2045-2322en_US
dc.identifier.urihttp://hdl.handle.net/10735.1/5748
dc.identifier.volume6en_US
dc.relation.urihttp://dx.doi.org/10.1038/srep23016
dc.rightsCC BY 4.0 (Attribution)en_US
dc.rights©2016 The Authors. All Rights Reserved.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceScientific Reports
dc.subjectMaterials scienceen_US
dc.subjectNanotechnologyen_US
dc.subjectCarbon nanotubesen_US
dc.titleBio-Inspired, Moisture-Powered Hybrid Carbon Nanotube Yarn Musclesen_US
dc.type.genrearticleen_US

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
NTI-3099-6943.14.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
NTI-3099-6943.14_S.pdf
Size:
829.73 KB
Format:
Adobe Portable Document Format
Description:
Supplement
No Thumbnail Available
Name:
NTI-3099-6943.14_S2.avi
Size:
1.52 MB
Format:
Unknown data format
Description:
Video
No Thumbnail Available
Name:
NTI-3099-6943.14_S2.mp4
Size:
2.68 MB
Format:
Description:
Video