Fabrication of Carbon Nanofiber Electrodes Using Poly(acrylonitrile-co-vinylimidazole) and Their Energy Storage Performance




Journal Title

Journal ISSN

Volume Title





For electrodes in electrochemical double-layer capacitors, carbon nanofibers (CNFs) were prepared by thermal treatment of precursor polymer nanofibers, fabricated by electrospinning. Poly(acrylonitrile-co-vinylimidazole) (PAV) was employed as a precursor polymer of carbon nanofibers due to the effective cyclization of PAV polymer chains during thermal treatment compared to a typical precursor, polyacrylonitrile (PAN). PAV solutions with different comonomer compositions were prepared and electrospun to produce precursor nanofibers. Surface images obtained from scanning electron microscopy showed that their nanofibrous structure was well preserved after carbonization. It was also confirmed that electrospun PAV nanofibers were successfully converted to carbon nanofibers after the carbonization step by Raman spectroscopy. Carbon nanofiber electrodes derived from PAV showed higher specific capacitances and energy/power densities than those from PAN, which was tested by coin-type cells. It was also shown that PAV with an acrylonitrile/vinylimidazole composition of 83:17 is most promising for the carbon nanofiber precursor exhibiting a specific capacitance of 114 F/g. Their energy and power density are 70.1 Wh/kg at 1 A/g and 9.5 W/kg at 6 A/g, respectively. In addition, pouch cells were assembled to load the higher amount of electrode materials in the cells, and a box-like cyclic voltammetry was obtained with high capacitances. © Korean Carbon Society 2019.



Carbon nanofibers, Electrodes, Electrospinning


National Research Foundation of Korea (NRF-2015R1C1A2A01051863).


©2019 Korean Carbon Society