Crustal Wave Speed Structure of North Texas and Oklahoma Based on Ambient Noise Cross-Correlation Functions and Adjoint Tomography
Date
Authors
ORCID
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.doi
Abstract
Recently, seismologists observed increasing seismicity in NorthTexas and Oklahoma. Based on seismic observations and other geophysical measurements, numerous studies have suggested links between the increasing seismicity andwastewater injection during unconventional oil and gas exploration. To better monitor seismic events and investigate their triggering mechanisms, we need an accurate 3-D crustalwave speed model for the study region. Considering the uneven distribution of earthquakes in this area, seismic tomography with local earthquake records has difficulties achieving even illumination. To overcome this limitation, in this study, ambient noise cross-correlation functions are used to constrain subsurface variations in wave speeds. I use adjoint tomography to iteratively fit frequency-dependent phase differences between observed and predicted band-limited Green's functions. The spectral element method is used to numerically calculate the band-limited Green's functions and the adjoint method is used to calculate misfit gradients with respect to wave speeds. A total of 25 preconditioned conjugate gradient iterations is used to updatemodel parameters and minimize datamisfits. Features in the new crustal model TO25 correlate well with geological provinces in the study region, including the Llano uplift, the Anadarko basin, the Ouachita orogenic front, etc. In addition, there are relatively good correlations between seismic results with gravity and magnetic observations. This new crustal model can be used to better constrain earthquake source parameters in North Texas and Oklahoma, such as epicentre location as well as moment tensor solutions, which are important for investigating triggering mechanisms between these induced earthquakes and unconventional oil and gas exploration activities. © The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society.