
GEOMETRIC AND COMBINATORIAL PROPERTIES OF NETS IN PLANE AND

HIGHER-DIMENSIONS

by
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GEOMETRIC AND COMBINATORIAL PROPERTIES OF NETS IN PLANE AND

HIGHER-DIMENSIONS

Roger Fidèle Ranomenjanahary, PhD
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Supervising Professor: Dr.Vladimir Dragović, Chair

This work belongs to a broad area of geometry of discrete integrable systems. The main

objects of our study are nets which are configurations of affine subspaces limited to certain

geometric and combinatorial constraints. For instance, confocal nets are characterized by

their lines which are tangent to a given conic in plane. Similarly, incircular nets (IC nets) are

congruences of straight lines in a plane having the property that every quadrilateral admits

an inscribed circle. Checkerboard IC nets are a generalization of the IC nets in planar case

and are defined by the property that every second elementary quadrilateral is circumscribed.

One of the aims of this dissertation is to provide a new method of constructing confocal IC

nets and confocal checkerboard IC nets which is based on integrable billiards.

The second aim of this dissertation is to, following Böhm’s work, study of divisions of space

into circumscribed cuboids. We give a proof of the following statement: a division of 3-

dimensional Euclidean space by planes into circumscribed cuboids consists of three families

of planes such that all planes in the same family intersect along a line, and the three lines

are coplanar. Then we generalize this statement to 4-dimensional case and prove it.
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CHAPTER 1

INTRODUCTION

Discrete differential geometry is a new area of mathematics that interacts with both differ-

ential geometry and discrete geometry. The main objective of this field of Mathematics is

to develop discrete equivalents of the geometric notions and method of classical differential

geometry. Nowadays, mathematics and physics communities are attracted by the study of

discrete differential geometry since this area of mathematics has several applications in com-

puter graphics, architecture, and theoretical physics [3]. One example of the fields of discrete

differential geometry is the discrete integrable systems. The later provides an interaction

with dynamical systems, algebraic geometry and geometry [28].

For instance, in the nineteenth century, Poncelet’s theorem is one of most famous and

most beautiful result in algebraic geometry. This theorem concerns closed polygons inscribed

in one conic and circumscribed about another [9, 14, 30]. Darboux has developed the subject

by extending the sides of the Poncelet polygon and has introduced corresponding Poncelet-

Darboux grids. In 2005, Richard Evan Schwartz studied further the Poncelet-Darboux grids

and proved that the sets Pk = ∪i−j=kli∩ lj lie on ellipses and they are projectively equivalent

to each other. Similarly, the sets Qk = ∪i+j=kli ∩ lj lie on hyperbolas and they are also

projectively equivalent, where li, i ∈ {1, · · · , n}, are the lines containing the sides of the

Poncelet polygon [33]. Another proof of Schwartz’s theorem was given by Mark Levi and

Serge Tabachnikov the same year using the properties of billiards in ellipses [26, 35]. Few

years later, Vladimir Dragović and Milena Radnović generalized Darboux theorem in a plane

and also gave a higher-dimensional generalization of that theorem [15].

Lines congruences are among the fundamental objects in discrete differential. These lines

congruences play an important role in the field of integrable discrete differential geometry,

which are attached to the vertices of a Z2 lattice. The congruences of straight lines in a plane
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with the combinatorics of square grid with an additional property, every elementary quadri-

lateral possesses an inscribed circle define an incircular net, were introduced and studied by

Böhm in the framework of Euclidean geometry and spherical geometry [39]. In 2017, Ar-

seniy V. Akopyan and Alexander I. Bobenko investigated further the congruences of straight

lines in the plane with the combinatorics of square grid and introduced nets of lines called

incircular nets (IC nets), whose quadrilaterals admit inscribed circles, and derived several

geometric and combinatorial properties. In addition, they also gave a generalization of the

notion of the incircular nets in the planar case, called checkerboard incircular nets (checker-

board IC nets). The checkerboard IC net can be defined as congruences of straight lines in

the plane with the combinatorics of square grid such that every second quadrilateral admits

an inscribed circle [1]. A subclass of the checkerboard IC nets is confocal checkerboard IC

nets [4]. Those kind of checkerboard IC nets are characterized by their lines, meaning that

all lines are tangent to a given conic.

A geometric property of an IC net is the 3×3 incircles incidence theorem. An elementary

proof of this theorem is given in Chapter 3 that is based on Lemma 27. The main result

in Chapter 4 is to provide a new method of constructing confocal IC nets and cofoncal

checkerboard IC nets based on integrable billiards. Double reflection nets are discrete systems

arising from the dynamics of billiards within confocal quadrics. Our main new result on such

systems is a new geometric configuration of twelve focal nets and eight lines. These focal

nets and these lines form a cuboid in a dual projective space (Theorem 47). In Chapter 5,

we give a proof of Böhm’ s theorem in 3-dimensional space and generalize that theorem in

4-dimensional case and prove it.

A quad-graph is a cellular decomposition of an oriented surface whose cells are quadri-

laterals. A part of this dissertation describes the connection of the work of V. E. Adler, A.

I. Bobenko and Y. B. Suris on the theory of integrable systems of quad-graphs [3] and some

results obtained from the billiard algebra [15].
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This dissertation is made up of five chapters. The main goal of Chapter 2 is to present

basic definitions and elementary properties of conics in the Euclidean plane E2 and in the

projective plane P2. One remarkable property of confocal conics that we will be presented in

this chapter is the Graves-Chasles theorem. This theorem is the key tool of the construction

of a confocal incircular net and a confocal checkerboard IC net presented in Chapter 3 and

also plays a crucial role in the proof of our main results in Chapter 4. In the second part of

this chapter, we will define what is called a quadric and recall its properties in the Euclidean

space E3 and in the projective space P3 such as Jacobi’s theorem, Chasles’ theorem, one

reflection theorem, double reflection theorem.

We begin Chapter 3 by a review of Böhm’s work on the circumscribed quadrilaterals nets.

Further study of the circumscribed quadrilaterals nets leads us to the subject of incircular

nets in the plane. This chapter also includes the generalization of the IC nets in the planar

case. Our presentation on the extended analysis of the IC nets and the checkerboard IC

nets follows the exposition found in [1]. However, most of the proofs of the geometric and

combinatorial properties of those nets are slightly different and more detailed than those

presented in [1].

Chapter 4 consists of the connection of mathematical billiards and confocal IC nets and

confocal checkerboard IC nets. The billiard system describes the motion of a free point

inside domain such that the point moves with a constant speed along a straight line until

it hits the boundary, and at the bouncing point, an incoming segment and an outgoing

segment satisfy the geometric law of optics [8, 9, 24, 33, 38]. We suppose that the domain

and the caustic of the billiards are smooth and convex. The generalization of the Darboux

theorems in [15] leads us to the new method of a construction of the confocal IC net and

of the confocal checkerbord IC net [18]. This construction starts from two different billiard

trajectories within the same conic and sharing the same caustic. These trajectories are not

periodic and they are either winding in the same direction or in the opposite directions.

3



Chapter 5 is split into two parts. The first part focuses on basic ideas of the theory of

quad-graph equations and the study of some classes of discrete configurations that arise from

the dynamics of billiards within confocal quadrics. An example of such discrete configurations

is double reflection nets. Double reflection nets are defined on cubic lattice, that is, maps that

assigns a line to each vertex of the lattice Z3 satifying that neighboring lines intersect [15, 17,

18]. In other words, the double reflection nets are discrete line congruences. Configurations

which are defined on non-cubic lattice consisting of cuboctahedra and octahedra will be

discussed. The latter configurations assign hyperplanes to the vertices of the lattice of a

given projective space [28]. The second part is motivated by Wolfgang Böhm’s work in 1965

concerning division of a space by planes into circumscribed cuboids. The division of an

3-dimensional Euclidean space by planes into circumscribed cuboids necessarily consists of

three families of planes such that all planes in the same family intersect along a line and

the three lines are coplanar [39]. We also generalize that result in 4-dimensional Euclidean

space. Finally, we present and study a natural three-dimensional version of the checkerboard

IC nets, called checkerboard inspherical nets (checkerboard IS nets) [1].

The division of a Euclidean space into circumscribed cuboids that we present in this

dissertation focuses only on the case where the dimension of space is 3 and 4. It would be

interesting to prove the natural generalization of a division of the n-dimensional space by

hyperplanes into circumscribed n-cuboid and generalize the following statement in an n-

dimensional space: each cuboid, which can be divided by three planes from different families

into eight circumscribed cuboids, is itself circumscribed.
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CHAPTER 2

ELEMENTARY PROPERTIES OF CONICS AND QUADRICS

2.1 Elementary properties of conics

As we know, there are several definitions of conics depending on the framework of geometry.

For instance, as planar section of cones of revolution, conics can be defined by their focal

properties or by their quadratic equation. From the point of view of projective geometry,

conics can also be defined as the set of intersection points of projective pencils. So, this

section contains definitions and some basic properties of conics in affine and projective planes.

All results presented can be found in different books on geometry of conics and in several

articles, see for instance [2, 11, 12, 19, 23, 24, 25] and [27].

2.1.1 Classification of conics in the Euclidean plane

Definition 1. A curve of second degree is a set of points whose coordinates in Cartesian

coordinate system satisfy a second order equation

a11x
2
1 + 2a12x1x2 + a22x

2
2 + 2b1x1 + 2b2x2 + c = 0. (2.1)

An ellipse, a parabola and a hyperbola are examples of curves of degree two. These conics

can be defined based on the focal properties.

Definition 2. • An ellipse is the set of points P for which the sum of its distances from

the two fixed points called foci is constant, that is,

|PF1|+ |PF2| = 2a1 with 2a1 > |F1F2| ≥ 0.

An equation of the ellipse can be written as follows:

x21
a21

+
x22
a22

= 1, a1 ≥ a2 > 0.

5



Figure 2.1: An ellipse.

The ellipse in Figure (2.1) is centered at the origin and has the foci at (±
√
a21 − a

2
2, 0),

where a1 and a2 are the lengths of major and minor axes, respectively.

• A hyperbola is the set of points Q for which the absolute value of the difference between

the distances to two fixed points, called the foci, is constant, that is,

||QF1|− |QF2|| = 2a1 > 0.

Figure 2.2: A hyperbola, l1 and l2 are called asymptotes.

An equation of the hyperbola is expressed as follows:

x21
a21

−
x22
a22

= 1, a1 > 0, a2 > 0.

6



The hyperbola in Figure 2.2 has the foci at (±
√
a21 + a

2
2, 0). Moreover, the hyperbola

and its real axis intersect in two different points and the distance of these points is equal

to 2a1. The quantities a1 and a2 are called respectively real semi-axis and imaginary

semi-axis.

• A parabola is the set of points R whose distances to some fixed point and a line are

constant. The point is called focus and the line is called directrix of the parabola. Note

that if the quantities a1 and a2 in the equation of hyperbola above are equal, then we

have a parabola and its equation can be written as

x22 = 2px1, p > 0.

The axis of the parabola is the same as the x1-axis. The parabola has focus at the point

(
p

2
, 0) and the directrix is x1 = −

p

2
.

2.1.2 Optical and isogonal property of conics

Theorem 1. Let C be a conic and l be a tangent line to C at a point P. Then l is the

bisector of the angle ∠F1PF2, where F1 and F2 are foci of the conic C.

(a) Optical property of an ellipse α.
(b) Optical property of a
hyperbola β.

Figure 2.3: Optical property of a conic.
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Proof. We will prove the theorem only for the case of an ellipse. Similar proof can be done

for the other type of conics [2]. Let C be an ellipse. In the Figure (2.3a), α plays the role of

C and let X 6= P be a point that lies on the line l. It is clear that the distance |XF1| + |XF2|

is greater than the distance |PF1| + |PF2|. In other words, for all points on the line l, only

the point P has the smallest sum of the distances to the foci F1 and F2. This means that

the angles formed by the lines (PF1) and (PF2) with the tangent line l at the point P are

equal. �

Theorem 2. Let C be an ellipse. Let P be a point lying outside of C and draw the two

tangent lines from the point P to C, and denote by X and Y their tangency points. Then,

∠F1PX = ∠F2PY, where F1 and F2 are foci of C.

Figure 2.4: Isogonal property of an ellipse.

Proof. In Figure 2.4, let F ′1 and F ′2 be the reflections of F1 and F2 with respect to the respective

lines (PX) and (PY). Then,

|F ′1P| = |F1P| and |F ′2P| = |F2P|. (2.2)

8



According to the Theorem 1, the points F1, Y, and F ′2 are collinear. By the same argument,

we can conclude that the points F2, F
′
1 and X are also collinear. Then, we obtain

|F2F
′
1| = |F2X|+ |XF1| = |F2Y|+ |YF1| = |F1F

′
2|. (2.3)

The combination of the equation (2.2) and the equation (2.3) proves that the two triangles

PF2F
′
1 and PF1F

′
2 are equal. That implies that

∠F1PF2 + 2∠F1PX = ∠F ′1PF2 = ∠F1PF
′
2 = ∠F1PF2 + 2∠F2PY.

Therefore, ∠F1PX = ∠F2PY. �

The property in the Theorem 2 holds for the hyperbola, see for example [2].

Corollary 3. Using the same assumptions and terminology of the Theorem 2, the line

(F1P) is the bisector of the angle ∠XF1Y.

2.1.3 Properties of conics in the projective plane

Definition 3. A projective conic in RP2 is a set of points whose homegenuous coordinates

satisfy the quadratic equation

C(x) = a11x
2
1 + 2a12x1x2 + 2a13x1x3 + a22x

2
2 + 2a23x2x3 + a33x

2
3 = 0. (2.4)

We can express C(x) in matrix form as follows

C(x) = x ′Ax = 0, (2.5)

where x = (x1, x2, x3), x
′ is the row vector and A is a 3× 3 nonzero symmetric matrix.

Definition 4. If the matrix A in the Definition 3 is non-singular, then the conic defined

by C(x) = 0 is called a non-degenerate. Otherwise, we call it a degenerate conic.
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Proposition 4. Let p be a projective transformation and C be a non-degenerate conic.

Then, the image of the conic C under the projective transformation p is a non-degenerate

conic. If C is degenerate conic, then p(C) is also a degenerate conic.

Proof. If the conic C is degenerate, then C can be a pair of lines or a single line or a point.

Any projective transformation can be written as y = Px, where P is a 3×3 matrix associated

with p. The set of the projective transformations forms a group under the operation of

composition of functions, then the map p has an inverse p−1. The map p−1 is also a projective

transformation. Therefore, p−1 maps points to points and lines to lines. It follows that the

image of the degenerate conic C under a projective transformation is again a degenerate

conic.

Now, suppose that the conic C is non-degenerate. By Definition 3, C has the equa-

tion of the form x ′Ax = 0. The map p−1 is given by x = P−1y. Therefore, we obtain

y ′(P−1) ′AP−1y = 0. Define B := (P−1) ′AP−1. Notice that the matrix B is a 3× 3 symmetric

matrix and det(B) =
det(A)

(det(P))2
. Thus, y ′By = 0, which means that the image of C under p

is a conic. It remains to verify that this image cannot be a degenerate conic. The projective

map p−1 must map the image p(C) back to the original non-degenerate conic C, then the

image of C under p must be a non-degenerate conic. �

Definition 5. Let C be a non-degenerate conic. A line ly is said to be a tangent line to

the conic C if the line ly meets C exactly at only one point, and at no other point. The set

of the tangent lines to C is called the dual to C and is denoted by C∗.

Theorem 5. Let C be a non-degenerate conic with equation C(x) = x ′Ax = 0 and C∗ be

the dual of C. Then, y ′A−1y = 0 is the equation of C∗. Moreover, the conic C∗ is also a

non-degenerate in dual projective space RP2∗.

Proof. Since the conic C is non-degenerate, it consists of simple points. It follows that

the equation of tangent to C at a point x is y = Ax. Then, we have x = A−1y. By
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substituting the latest expression into the equation of C to get the equation for C∗, we have

y ′(A−1) ′AA−1y = y ′(A−1) ′y = y ′(A ′)−1y = y ′A−1y = 0 since the matrix A is symmetric,

that is, A ′ = A. �

Theorem 6. Given five generic points such that no three of them are collinear. Then, a

conic C is defined by these points.

Proof. See the proof of the Theorem 6.1.2 in [24]. �

2.1.4 Pascal, Pappus and Brianchon theorem

A famous mathematician Blaise Pascal discovered the so called Pascal’s theorem in 1640.

This theorem is an undeniable generalization of the Pappus’s theorem because if the conic in

the Pascal’s theorem is a degenerate conic consisting of a pair of lines, then we immediately

obtain the Pappus’s theorem. Theorem 7 is also a simple criterion for six points to lie on a

conic.

Theorem 7 (Pascal’s theorem). Let X1, X2, X3, X4, X5 and X6 be six points such that no three

of them are collinear. The six points lie on a conic if and only if the three points

P = (X1X2) ∩ (X4X5), Q = (X2X3) ∩ (X5X6), R = (X3X4) ∩ (X1X6)

are collinear.

Proof. Suppose that the six points X1, X2, X3, X4, X5 and X6 lie on a conic C (see Figure 2.5).

We want to show that the points P, Q and R are collinear. Let A = (X1X6) ∩ (X2X3) and

B = (X1X2) ∩ (X5X6). We have the following equalities between cross ratio

cr(R,A, X1, X6) = cr(X3R, X3A,X3X1, X3X6)

= cr(X3X4, X3X2, X3X1, X3X6)

= cr(X5X4, X5X2, X5X1, X5X6)

= cr(P, X2, X1, B).
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Figure 2.5: Pascal’s theorem.

The point Q is the intersection of the lines (RP) and (X2X3). Since the perspectivity of

center at Q maps R to P, A to X2 and X1 to X1, and preserves the cross ratio, it must map

X6 to B. If follows that the points X6, Q and B are collinear. Since Q belongs to the lines

(X2X3) and (RP), it must lie on the line (X5X6).

Suppose that the points P, Q and R are collinear. We need to prove that the six points

X1, X2, X3, X4, X5 and X6 lie on a conic. Since the five points X1, X2, X3, X4 and X5 are in

general position, by Theorem 6 there is a conic passing through these points, say C. Note

that the points P, Q, and R are the intersections of the pairs of lines (X1X2) and (X4X5),

(X2X3) and (X5X6), and (X3X4) and (X5X6) respectively. Let Y be the intersection point of

C and (QX5) different from X5. By assumption, the intersection of (X3X4) and (X1Y) lies on

the line (PQ), which means that their point of intersection coincides with the point R. It

follows that the points Y and X6 must coincide. �

The dual of the Pascal’s theorem is called Brianchon’s theorem and is depicted in Figure

2.6, and it was discovered by Chasles Julien Brianchon in 1804.

Theorem 8 (Brianchon’s theorem). Given any six lines l1, l2, l3, l4, l5 and l6 and let X12 :=

l1 ∩ l2, X23 := l2 ∩ l3, X34 := l3 ∩ l4, X45 := l4 ∩ l5, X56 := l5 ∩ l6 and X16 := l1 ∩ l6. The lines
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(X12X45), (X23X56) and (X34X16) intersect at a point if and only if there is a conic tangent to

all the lines l1, l2, l3, l4, l5 and l6.

Figure 2.6: Brianchon’s theorem.

Proof. The proof of this theorem is similar to the proof of the Theorem 7. �

2.1.5 Confocal conics, Graves-Chasles theorem and Ivory theorem

Definition 6. A family of conics are called confocal if all conics in the family have the

same foci. An equation of a confocal family can be written as follows

x21
a21 + λ

+
x22

a22 + λ
= 1, (2.6)

where λ is a real parameter.

The proof of the Graves-Chasles Theorem 9 is based on the theorems in the section 2.1.2.

Theorem 9 (Graves-Chasles theorem). Let (abcd) be a complete quadrilateral such that

lines contain its sides are tangent to a conic α. Then the four following conditions are

equivalent:

1. The quadrilateral (abcd) is circumscribed.

2. Points a and c lie on a conic confocal with α.
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3. Points b and d lie on a conic confocal with α.

4. Points e and f lie on a conic confocal with α.

Figure 2.7: Graves-Chasles theorem.

Proof. This proof follows the exposition from [1]. Let γ, β and δ be conics passing through

the pairs of points a and c, b and d, and e and f, respectively (see Figure 2.7). Since

these conics are confocal with α, they form a dual pencil. By assumption, the lines of all

sides of the quadrilateral (abcd) are tangent to the conic α. We then obtain two coordinate

systems which are formed by the dual pencil of conics and the family of tangent lines to

α. One proves that these two coordinate systems are diagonal-connected. This proves the

equivalence of the conditions (2), (3) and (4).

Suppose that the quadrilateral (abcd) satisfies the three last conditions. According to

second part of the Lemma 2.4 in [1], the lines (ad), (bc), (ab) and (cd) tangent to the

conic α intersect at one point. We also know that the bisectors of the angles formed by the

tangent lines from a point, say p, to the conic α coincide with the bisectors of the angles

∠f1pf2, where f1 and f2 are foci of conic α. Let lp be the bisector of the angle ∠f1pf2.
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The point p is an arbitrary point, so we can choose p = a. Now, we will prove that the

bisector la is tangent to a conic γ confocal with α at the point a. The Theorem 1 says that

the angles formed by lines (af1) and (af2) with a tangent line to γ at a, say l, are equal.

Moreover, the lines (af1) and (af2) form equal angles with the bisector la, which implies

that the lines l and la are orthogonal. Thus, la must be tangent to γ. By repeating the

foregoing arguments, we can show that the bisectors passing through the other vertices are

tangent to some conics confocal with α. Thus, the point of intersection of these bisectors is

the center of the quadrilateral (abcd).

Assume that the quadrilateral (abcd) is circumscribed. We need to show that there is a

conic γ confocal with α such that the points a and c lie on γ. Let us choose two points c ′

and d ′ such that these points lie on the lines (bc) and (ad) respectively, the points a and c ′

lie on a conic confocal with α, and the line (c ′d ′) is tangent to α. Then, the quadrilateral

(abc ′d ′) is also circumscribed. Since the inscribed circles of the quadrilaterals (abcd) and

(abc ′d ′) are uniquely determined by the three lines (ab), (ad) and (bc), these inscribed

circles coincide. Notice that the conic α and the inscribed circle have only four tangent lines

in common. Since they have already three common tangent lines (ab), (ad) and (bc), this

implies that the tangent lines (cd) and (c ′d ′) must coincide. �

The Corollary 10 follows immediately from the second part of the proof the Graves-

Chasles theorem.

Corollary 10. Suppose that the three sides (ab), (bc) and (cd) of a circumscribed quadri-

lateral (abcd) are tangent to a conic α and the two opposite vertices a and c belong to

the same conic confocal with α. Then, the forth side (ad) of the quadrilateral (abcd) also

touches the conic α.

Confocal conics constitute an orthogonal net. The net of confocal conics in the Euclidean

plane satisfies the Ivory theorem.
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Theorem 11 (Ivory’s theorem). Let β1, β2, γ1 and γ2 be confocal conics. Suppose that β1,

β2 are ellipses, and γ1, γ2 are hyperbolas. Denote by a, b, c and d the intersection points

of these conics. Then, |ac| = |bd|.

Figure 2.8: Ivory’s theorem.

Proof. Note that the ellipses β1, β2 and the hyperbolas γ1, γ2 are from the confocal family,

and a, b, c and d are their intersection points. Then, one proves that there exists a conic

α from the confocal family such that the lines (ac) and (bd) are tangent to it. Let us draw

four tangent lines to α such that each tangent passes through one of the points a, b, c and

d, and denote by x, y, z and t the points of intersection of these tangent lines. We thus

obtain a quadrilateral (xyzt). As we see in Figure 2.8, the four small quadrilaterals (apbx),

(apdt), (pdzc) and (bpyc) form the big quadrilateral (xyzt). Notice also that all sides

of all quadrilaterals are tangent to α and two opposite vertices of each small quadrilateral

lie on the same conic confocal with α. According to the Grave-Chasles Theorem 9, these
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quadrilaterals are circumscribed. Indeed, we obtain the following equations

|ap|+ |dt| = |at|+ |dp|, (2.7a)

|bp|+ |cy| = |cp|+ |by|, (2.7b)

|ax|+ |bp| = |ap|+ |bx|, (2.7c)

|dp|+ |cz| = |dz|+ |cp|. (2.7d)

By adding the equations (2.7a), (2.7b), (2.7c) and (2.7d) and by using the facts that |tF| =

|tI|, |xA| = |xJ|, |zE| = |zM|, |yN| = |yB|, we have the following equality

2|ac|+ |EF|+ |AB| = 2|bd|+ |IJ|+ |MN|. (2.8)

Since |EF| = |CD| = |AB|, |IJ| = |KL| = |MN|, the equation (2.8) can be expressed as follows

2|ac|+ 2|AB| = 2|bd|+ 2|IJ|

2|ac|+ 2|CD| = 2|bd|+ 2|KL|

2|ac|+ 2(|pC|+ |pD|) = 2|bd|+ 2(|pK|+ |pL|).

Finally, since |pC| = |pK| and |pL| = |pD|, we obtain |ac| = |bd|. �

A different formulation of the Ivory’s theorem employs the fact that any two confocal

conics Cλ and Cµ of the same types define an affine transformation. This affine transforma-

tion is given by the relation (2.11). Then any conic confocal with Cλ, whose type is different

than Cλ, intersects orthogonally the conics Cλ and Cµ at the corresponding points P ∈ Cλ

and Q = Aλ,µ(P) ∈ Cµ. Therefore, Ivory’s theorem can be stated as follows:

|P1Q2| = |Q1P1| for all P1, P2 ∈ Cλ and Qi = Aλ,µ(Pi), i=1, 2.
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2.1.6 Darboux coordinates generated by a conic and Elliptic coordinates

We will start with the notion of Darboux coordinates generated by a conic. Let α be a given

ellipse. This is a rational curve, so we fix one of its rational parameterizations and denote

by x the parameter in this parameterization. Consider a point X outside of α (see Figure

2.9). The Darboux coordinates x1 and x2 of the point X are the values of the parameter x

at the touching points A and B of the two tangent lines from the point X to the ellipse α

[22, 26].

Figure 2.9: Darboux coordinates.

It follows that the equations of confocal ellipses and the confocal hyperbolas are given

respectively by the following equations

x2 − x1 = constant,

x1 + x2 = constant.

(2.9)

We will use the Darboux coordinates to give a simple proof of the 3×3 incircles incidence

theorem of the IC net in Chapter 3.

Definition 7. Elliptic coordinates (or Jacobi coordinates) of a point x = (x1, x2) in a plane

are the values (λ1, λ2) that satisfy the equation (2.6).
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Now, we will express the Cartesian coordinates of the point x = (x1, x2) in term of the

elliptic coordinates. From the equation (2.6), the values of λ for the confocal conics through

the point x = (x1, x2) are given by the quadratic equation

ψ(λ) := (a21 + λ)(a
2
2 + λ) − (a22 + λ)x

2
1 − (a21 + λ)x

2
2 = 0.

Let us denote by λ1 and λ2 the roots of the equation ψ(λ) = 0. It is clear from the expression

of ψ(λ) that the leading coefficient is equal to 1, we thus rewrite the above equation as follows

(λ− λ1)(λ− λ2) = (a21 + λ)(a
2
2 + λ) − (a22 + λ)x

2
1 − (a21 + λ)x

2
2.

If we substitute the value −a21 and −a22 in succession in this identity, we obtain

x21 =
(a21 + λ1)(a

2
1 + λ2)

a21 − a
2
2

,

x21 =
(a22 + λ1)(a

2
2 + λ2)

a22 − a
2
1

.

(2.10)

The equation (2.10) shows us the relationship between the Cartesian coordinates of the point

(x1, x2) and the elliptic coordinates (λ1, λ2) [26]. As is known, there exists a linear map which

maps a conic to another conic of the same type. Let Cλ, Cµ be two confocal conics of the

same type. Then the linear map that maps Cλ to Cµ is given by the diagonal matrix Aλ,µ

defined by the equation (2.11).

Aλ,µ = Diag

(√
a21 + µ

a21 + λ
,

√
a22 + µ

a22 + λ

)
. (2.11)

Theorem 12 ([26], Lemma 5.1). Let Cλ and Cµ be two conics of the same type. Suppose

that a point P lies on the conic Cλ. Then, the points P and Q := Aλ,µ(P) lie on the same

conic confocal with Cλ, whose type is different than Cλ and Cµ.

Proof. We will focus on the case where Cλ and Cµ are ellipses (see Figure 2.10). For the

other case, the proof is similar. Let P be a point on Cλ whose elliptic coordinates are (λ1, λ2)
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Figure 2.10: Affine transformation between confocal conics.

and Q be a point on Cµ having the elliptic coordinates (µ1, µ2). Then λ2 = λ and µ2 = µ.

It remains to verify that λ1 = µ1. To prove this latest equality, let us denote by (x1, x2)

and (y1, y2) the Cartesian coordinates of the points P and Q, respectively. According to the

equations (2.10), we have the following relations

y21 =
(a21 + µ1)(a

2
1 + µ2)

a21 − a
2
2

,

y22 =
(a22 + µ1)(a

2
2 + µ2)

a22 − a
2
1

.

(2.12)

Since Q = Aλ,µ(P), and using the equation (2.11), we obtain

y21 =
a21 + µ

a21 + λ
x21 =

(a21 + µ)

a21 + λ

(a21 + λ1)(a
2
1 + λ)

a21 − a
2
2

=
(a21 + µ2)(a

2
1 + λ1)

a21 − a
2
2

since λ2 = λ and µ = µ2,

y22 =
a22 + µ

a22 + λ
x22 =

(a22 + µ)

a22 + λ

(a22 + λ1)(a
2
2 + λ)

a22 − a
2
1

=
(a22 + µ2)(a

2
2 + λ1)

a22 − a
2
1

.

(2.13)

By comparing the equations (2.12) and (2.13), we obtain λ1 = µ1. �

Proposition 13 ([1], Lemma 2.11). Given two confocal conics α and α ′, let denote by α"

the conic dual of α with respect to α ′. Then there is an affine transformation which maps

α ′ to α and α" to α.
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Proof. We suppose that the two confocal conics α and α ′ are ellipses and their equations

are the following (we prove the other cases in the same way)

α :
x2

a2
+
y2

b2
= 1, α ′ :

x2

c2
+
y2

d2
= 1.

Let (x0, y0) be a point on α ′. Then the equation of a tangent line passing through the point

(x0, y0) is given by

x0

c2
x+

y0

d2
y = 1.

This tangent line intersects the conic α" in two different points and those points are dual to

the lines tangent to α with respect to α ′. Therefore, we obtain

x0

c2
x+

y0

d2
y =

x2

a2
+
y2

b2
⇔ x

a2

(
x−

a2x0

c2

)
+
y

b2

(
y−

b2y0

d2

)
= 0.

The conic α is non-degenerate, then
x

a2
6= 0 and

y

b2
6= 0. Therefore, one solution of the

equation above is

x =
a2x0

c2
, y =

b2x0

d2
.

Indeed, the equation of the conic α" can be expressed as follows

(a2x0
c2

)2
a2

+

(b2x0
d2

)2
b2

= 1 ⇔ a2x20
c4

+
b2y20
d4

= 1.

According to the equation (2.11), the affine transformation T which maps α ′ to α and α" to

α is defined by

T :=α ′,α Diag

(√
a2

c2
,

√
b2

d2

)
=α",α ′ Diag

(√
a2c2

c4
,

√
b2d2

d4

)
= Diag

(
a

c
,
b

d

)
.

�
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2.2 Elementary properties of quadrics

Some fundamental notions and facts on conics have been mentionned in the previous section.

Quadrics are generalization of conics. This present section deals with some elementary

properties of quadrics. Confocal families of quadrics, Jacobi’s theorem, Chasles’s theorem,

and reflection laws such as one reflection theorem, double reflection theorem and virtual

reflection are the main topics that we will present here. All results can be found in [5, 11,

16, 19, 25] and [38]. Let A be an affine or projective space over a field k of characteristic

unequal to 2.

Definition 8. A quadric in A is the set of points of A such that their coordinates are the

zeros of a quadratic form F(x) = 0. If the space A is projective, then F is homogeneous and

the quadric is projective quadric. Likewise, if A is affine space, then we obtain an affine

quadric.

2.2.1 Pole and polar plane

Let V be a vector space over the field k. As we mentioned in the Definition 8, a quadratic

form F defines a quadric Q in the projective space A = P(V) := P3. There exists a bilinear

form B associated with the quadratic form F. We thus have the following relation

B(x, x) = F(x).

If the quadric consists of simple points, then the bilinear form B is non-degenerate, that is,

det(B) 6= 0. The converse is also true. In this case, there exists an isomorphism χ between

the vector space V and its dual V∗:

χ(x)(y) := B(x, y). (2.14)
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The projective space of hyperplanes in P3 is denoted by (P3)∗. Note that the isomorphism

χ between the vector spaces V and V∗ induces an isomorphism P(χ) from P3 and (P3)∗.

Definition 9. The hyperplane P(χ)(x0) is called the polar to the point x0 with respect to

the quadric Q, and its equation is expressed as follows

B(x0, x) = 0.

Definition 10. A pole of a hyperplane with respect to the quadric Q is a point such that

the point is the conjugate of the hyperplane with respect to the quadric Q.

We know that with respect to a quadric Q there exists a pole A for any plane PA. The

converse is also true, that is, for any point B, there is a polar plane PB whose corresponding

pole is the point B. The following proposition states the basic properties of poles and their

polar planes.

Proposition 14 ([7]). 1. If a plane P is tangent to the quadric Q at a point A, then its

pole with respect to Q is the point A.

2. If a plane P contains a point A, then the pole of the plane P is in the polar plane of

the point A.

3. A set of polar planes are in pencil if and only if their poles are collinear.

4. If a line l contains the pole A of the plane P , and l intersects the plane P at a point

B and intersects the quadric Q at C and D, then the four points form a harmonic set.

Any line pencil (XC), (XD), (XA), (XB) from a point X also form a harmonic set.

Notice that if three points (resp. lines) of a harmonic set are given, then for an assigned

order, the forth point (resp. line) is uniquely determined.
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2.2.2 Confocal families of quadrics

In this section, we will define families of quadrics in the 3-dimensional Euclidean space E3

and summarize their elementary properties.

Definition 11. A family of confocal quadrics in the 3-dimensional Euclidean space E3 is

a family defined by the equation

Qλ :
x21

a21 + λ
+

x22
a22 + λ

+
x23

a23 + λ
= 1, (λ ∈ R) (2.15)

and where a1, a2 and a3 are real constants (see Figure 2.11).

Note that a family of confocal quadrics in the Euclidean space defined by the equation

(2.15) is determined exactly by only one quadric. The type of quadric Qλ changes as the

value of the parameter λ passes the values −a22 and −a21. Then we obtain the following

classifications.

• For −a23 < λ < −a22, the quadric Qλ is a hyperboloid of two sheets.

• For −a22 < λ < −a21, the quadric Qλ is a hyperboloid of one sheet.

• For −a21 < λ, the quadric Qλ is an ellipsoid.

Theorem 15 (Jacobi’s theorem). Any generic point P = (x1, x2, x3) of the 3-dimensional

Euclidean space is the intersection of exactly three quadrics of the confocal family (2.15).

The quadrics are pairwise orthogonal at P.

Proof. The equation of a quadric, from the confacal family, passing through a given point

P satisfies the equation (2.15). Then, we can express the equation of that quadric in the

following form

(a21 + λ)(a
2
2 + λ)(a

2
3 + λ) − (a22 + λ)(a

2
3 + λ)x

2
1 − (a21 + λ)(a

2
3 + λ)x

2
2 − (a21 + λ)(a

2
2 + λ) = 0.
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Figure 2.11: Confocal quadrics in the 3-dimensional space.

This is a cubic equation and it has a leading coefficient equal to 1. Let (λ1, λ2, λ3) be the

roots of this cubic equation. Now, we will show that the quadrics are pairwise orthogonal

at the point P. Let Qλ1 , Qλ2 and Qλ3 be these quadrics. Let us prove the orthogonality of

the quadrics Qλ1 and Qλ2 . For the other cases, the proof is similar. The equations of the

quadrics Qλ1 and Qλ2 are given by the equation (2.15). By subtracting these equations, we

have

x21
(a21 + λ1)(a

2
1 + λ2)

+
x22

(a22 + λ1)(a
2
2 + λ2)

+
x23

(a23 + λ1)(a
2
3 + λ2)

= 0. (2.16)

A normal vector to the quadric Qλ1 at the point P is the gradient of the equation (2.15) on

the left hand side. Then we have

NQλ1
=



x1

a21 + λ1
x2

a22 + λ1
x3

a23 + λ1

 .
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Similarly, a normal vector to the quadric Qλ2 at the point P is

NQλ2
=



x1

a21 + λ2
x2

a22 + λ2
x3

a23 + λ2

 .

Therefore, we obtain

NQλ1
·NQλ2

=



x1

a21 + λ1
x2

a22 + λ1
x3

a23 + λ1

 ·


x1

a21 + λ2
x2

a22 + λ2
x3

a23 + λ2


=

x21
(a21 + λ1)(a

2
1 + λ2)

+
x22

(a22 + λ1)(a
2
2 + λ2)

+
x23

(a23 + λ1)(a
2
3 + λ2)

= 0 by (2.16).

This proves that the two quadrics Qλ1 and Qλ2 are orthogonal at the point P. �

Theorem 16 (Chasles’ theorem). Any generic line in E3 is tangent to two distinct quadrics

from a given confocal family. The tangent planes to these quadrics at the points of tangency

with the line are orthogonal to each other.

Proof. Let l be a line in E3. Note that the projection of the family of confocal quadrics

along l to the orthogonal plane is one-parameter family of apparent contours1. This apparent

contours is a family of confocal conics. Moreover, the projection of the line is a point. We

know that there exits an ellipse and a hyperbola from a confocal family passing through this

point, and the ellipse and the hyperbola also are orthogonal to each other at that point. Each

of these two curves is the apparent contour of a quadric from the given confocal family, then

the two quadrics are tangent to the line l and are also orthogonal at the tangency point. �

1A generic orthogonal projection of a surface on the plane is a domain bounded by a curve, the apparent
contour of the surface.
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Let Q1 and Q2 be two quadrics in the projective space. These quadrics determine a

confocal family. Denote by u the tangent plane to Q1 at a point x and by z the pole of u

with respect to Q2. Suppose lines l1 and l2 intersect at x, and the plane containing the lines

l1 and l2 intersect u at a line l. We have the following definition.

Definition 12 ([7], [15] Definition 5). We say that lines l1 and l2 obey the reflection law

at the point x on the quadric Q1 with respect to the confocal system containing Q1 and Q2

if the four lines l1, l2, (xz) and l are coplanar and form a harmonic set.

There is a coincidence between the reflection law defined in the Definition 12 and the

standard reflection if we introduce a coordinate system in which the quadrics Q1 and Q2 are

confocal in the Euclidean sense.

Theorem 17 ([7],[15], One reflection theorem). Let lines l1 and l2 obey the reflection law

on the quadric Q1 at a point x with respect to the confocal system determined by the quadrics

Q1 and Q2. Assume that the line l1 intersects Q2 at y ′1 and y1, and u is tangent plane to Q1

at x, and z its pole with respect to Q2. Then the lines (y ′1z) and (y1z) respectively contain

the intersecting points y ′2 and y2 of the line l2 with Q2. The converse of statement is also

true.

Corollary 18. Assume that l1 and l2 satisfy reflection law on Q1 at x with respect to the

confocal system determined by Q1 and Q2. Then, the following properties hold:

1. The line l1 is tangent to Q2 if and only if l2 is tangent to Q2.

2. The line l1 intersects Q2 at two points if and only if l2 intersects Q2 at two points.

According to the billiard law at some confocal quadrics, there exist four lines reflect to

each other and these lines form the so-called Double reflection configuration.
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Theorem 19 ( [7, 15], Double reflection theorem). Let Q1 and Q2 be two quadrics and

l1 be a line which intersects Q1 at x1 and intersects Q2 at y1. Denote by u1 and by v1 the

tangent planes to Q1 and to Q2 respectively, and z1, w1 their poles with respect to Q2 and Q1.

Assume that the line (w1x1) intersects Q1 at another point x2 and the line (y1z1) intersects

Q2 at another point y2. Denote by l1 = (x1y2), l
′
1 = (y1x2), l

′
2 = (x2y2). Then, the pairs

of lines l1, l2; l1, l
′
1; l2, l

′
2; l

′
1, l
′
2 satisfy the reflection law at x1 on Q1, at y1 on Q2, at y2 on

Q2, at x2 on Q1 respectively.

Proof. Our proof is inspired by the exposition from [7]. Let u2 be the tangent plane to Q1

at x2 and v2 be the tangent plane to Q2 at y2. Suppose that z2 is the pole of the tangent

plane u2 with respect to Q2 and w2 is the pole of the tangent plane v2 with respect to Q1.

By assumption, the line (w1x1) intersects the quadric Q1 at the point x2. This means that

the points x1, x2, and w1 are collinear. Due to the Proposition 14, their polar planes with

respect to Q1 are in a pencil, that is, the polar planes u1, u2 and v1 are in the same pencil.

Thus, the poles of these polar planes with respect to Q2 are z1, z2, and y1 and these poles are

on a straight line. The point x2 is also contained in this line. It follows that the polar planes

of the points z1, z2, y1 and y2 with respect to Q2 are u1, u2, v1, v2, and they are collinear

according to the Proposition 14. The poles of the polar planes u1, u2, v1, v2 with respect to

Q1 are x1, x2, w1, w2, respectively, and they are on a straight line. Applying the Theorem

17, it is straightforward to verify that the pairs of lines l1, l2; l1, l
′
1; l2, l2 and l ′1, l

′
2 satisfy the

reflection law at the intersection points. Moreover, the reflection of a line at a given point

upon a quadric is unique. The double reflection theorem follows immediately. �

Corollary 20. Let l1, l2, l
′
1 and l ′2 be lines from the Theorem 19. If the line l1 is tangent

to a quadric Q ′ confocal with the quadrics Q1 and Q2, then the lines l2, l
′
1 and l ′2 are also

tangent to Q ′.
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The forth line of a double reflection configuration can be uniquely determined by the

three given lines for such configuration and this claim is formulated and proved in the next

proposition.

Proposition 21 ([17], Proposition 3.9). Let Q1 and Q2 be quadrics in the projective space

P3. Let l, l1 and l3 be lines such that the lines l and l1 reflect to each other off the quadric

Q1 and the lines l and l2 reflect to each other off Q2 with respect to the confocal system

determined by these two quadrics. Then there exists exactly only one line l12 such that the

lines l, l1, l2 and l12 form a double reflection configuration.

Proof. Let P1 be tangent hyperplane to Q1 at the point of intersection of the lines l and l1

and P2 be tangent hyperplane to Q2 at the point intersection of the lines l, l2. Then, the

hyperplanes P1 and P2 determine a pencil of hyperplanes. Choose two hyperplanes P ′1, P ′2

from the pencil determined by P1 and P2 such that P ′1 is tangent to Q1 and P1 6= P ′1, and P ′2

is tangent to Q2 and P2 6= P ′2. The four hyperplanes belong to the same pencil. Therefore,

the four lines form a double reflection configuration. �
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CHAPTER 3

EXTENDED ANALYSIS OF INCIRCULAR NETS AND CHECKERBOARD

INCIRCULAR NETS IN PLANE

The present chapter deals with the extended analysis of IC nets and checkerboard IC nets.

The main topics discussed are the method of constructing those nets in planar case and

their geometric and combinatorial properties. This chapter is devoted to the exposition of

the work of W. Böhm [39], Arseny and Bobenko [1]. Lemma 27 is a new result in this

chapter. From this lemma, we are also able to find an elementary proof of the Theorem 28.

Some proofs of the theorems that we will present here are more detailed and totally different

from those presented in the original articles.

3.1 Homothety and Monge’s theorem

Definition 13. An external center of similitude is a point from which at least two geomet-

rically similar figures can be seen as dilation or contraction of one another.

A homothety (or a central similarity) is a transformation that carries each point P in

the plane into a point P ′ on OP, where O is a fixed point, such that the ratio
OP ′

OP
= k

is the same for all P different from O (see Figure 3.1). The point O is called the center

of the homothety and the number k is called the homothety coefficient. The homothety

coefficient can be either negative or positive. For more details on the central similarity or

the homothety and the detailed proof of the Theorem 22, see for instance [14].

Theorem 22 ([14], page 29). Consider three similar geometric figures F1, F and F ′ such

that the figures F1 and F are centrally similar with similarity center O1, and F1 and F ′ are

centrally similar with similarity center O2 (see Figure 3.2). Then we have the following:

1. If the points O1 and O2 do not coincide, then the line (O1O2) passes through the center

of similarity O of the figures F and F ′.
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Figure 3.1: Two similar geometric figures related by a homothetic transformation with re-
spect to a homothetic center O.

2. If the points O1 and O2 coincide, then the point O1 is the center of similarity for the

figures F and F ′.

Figure 3.2: Three similar geometric figures.

Theorem 23 (Monge’s theorem of three circles). Given three disjoint circles of different

radii in the plane such that they lie completely outside each other. The six external tangents

to two of the three circles, taken pairwise, intersect at three points. Then the three points lie

on a straight line.

Proof. In Figure 3.3, let denote by C1 the circle with center at O1 and radius |O1A1| = r1, by

C2 the circle with center at O2 and radius |O2B1| = r1, and by C3 the circle with center at O3

and radius |O3C1| = r1. Consider the triangle PO1A1. Since the lines (O1A1) and (O2B1) are
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Figure 3.3: Monge’s Theorem of three circles.

perpendicular to the line (A1P), these two lines are parallel. Then, we obtain the following

relation
|PO1|

|PO2|
=

|O1A1|

|O2B1|
=
r1

r2
. (3.1)

Applying that argument to the triangles QO1A2 and RO2B2, we have

|QO3|

|QO1|
=

|O3C2|

|O1A2|
=
r3

r1
, (3.2)

|RO2|

|RO3|
=

|O2B2|

|O3C1|
=
r2

r3
. (3.3)

Hence,
r1

r2
.
r3

r1
.
r2

r3
= 1.

By Menelaus’ theorem, the points P, Q and R are on the same straight line. �

3.2 Extended analysis of incircular nets in plane

Circumscribed quadrilaterals nets have been studied by W. Böhm in the setting of Euclidean

and spherical geometries [39]. Recently, Akopyan and Bobenko gave new results regarding

checkerboard incircular nets in a plane [1]. These are congruences of straight lines in the

plane with the combinatorics of a square grid such that every second elementary quadrilateral

possesses an inscribed circle.
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3.2.1 Circumscribed quadrilaterals nets

We know that a quadrilateral is circumscribed if the sum of the lengths of a pair of opposite

edges is equal to the sum of the lengths of the other pair of opposite sides. The following

theorems concerns the circumscribed quadrilaterals whose sides are tangent lines to a given

conic.

Theorem 24 ([39], Böhm). A division of a plane by straight lines into circumscribed quadri-

laterals necessarily consists of the tangent lines to a given conic.

Figure 3.4: Quadrilaterals net.

Proof. In the Figure 3.4, let denote C1, C2, C3, C2, C3, C4, and C5 the inscribed circles in

the quadrilaterals (ABEF), (BCDE), (EFIJ), (DEJK), and (ACKI) respectively. We observe

that the circumscribed quadrilateral (ACKI) is divided into four small circumscribed quadri-

laterals. Let us consider the three triplets of circles C1, C2 and C3, C2, C3 and C4, and C2,

C3 and C5. According to Monge’s theorem, the three external centers of similitude for each

triplet of circles lie on a straight line. Then lines l1, l2 and l3 contain the external centers

of similitude of the circles C2, C3 and C4, C1, C2 and C3, and C2, C3 and C5 respectively.
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The lines l1, l2 and l3 also connect the opposite vertices of the hexagon made by the lines

(AC), (CD), (BJ), (AI), (IJ) and (EF). Moreover, these lines intersect with external center of

similitude of the circles C2 and C3. Applying Theorem 8, the six sides of the hexagon are

tangent to a conic. �

Definition 14. A net in a plane is configurations of points and lines limited to certain

geometric and combinatorial constraints.

Definition 15. A rectilinear net is a net whose quadrilaterals made by straight lines.

Theorem 25 ([39], Böhm). Two adjacent circumscribed quadrilaterals determine a circum-

scribed quadrilaterals net.

Figure 3.5: Two adjacent circumscribed quadrilaterals determine a net.

Proof. In the Figure 3.5, let denote C1, C2, C3, C2, C3, C4, and C5 the inscribed circles in

the quadrilaterals (ABEF), (BCDE), (EFIJ), (DEJK), and (ACKI) respectively. Since any

five lines in general position such that no three of them are concurrent uniquely define a

conic, it is sufficient to prove that the line l4 is tangent to the conic determined by the
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lines (AC), (CD), (BJ), (AI), (IJ) and (EF). By Theorem 24, the line (IJ) touches the conic

determined by the lines (AC), (CD), (BJ), (AI) and (EF), say α, and the line l4 touches the

conic determined by the lines (AC), (BJ), (AI), (EF) and (IJ), say β. However, the two conic

α and β share five tangent lines, thus they must coincide. Therefore, the line l4 is tangent

to the conic determined by the lines (AC), (CD), (BJ), (AI), (IJ) and (EF). By continuing

this procedure, we will construct the entire circumscribed quadrilaterals net. �

Theorem 26 ([39], Böhm). Every quadrilateral that can be divided into four circumscribed

quadrilaterals, by two lines, is itself circumscribed.

Proof. The proof is straightforward by using the fact that the four small quadrilaterals are

circumscribed. �

3.2.2 Definition, construction and geometric properties of IC nets

Let us introduce some useful notations that we need throughout this section. Let f : Z2 −→
R2 be a map of a square grid to a plane. Then we have the following:

• the vertices of a net are denoted by fi,j = f(i, j),

• �ci,j is a quadrilateral with vertices fi,j, fi+c,j, fi+c,j+c, and fi,j+c. This quadrilateral �ci,j

is called a net-square,

• if c = 1, the quadrilateral �1i,j is called a unit net-square and denoted by �i,j.

Definition 16 ([1], Definition 2.1). A map f : Z2 −→ R2 is called an incircular net (IC

net) if the following conditions hold:

1. For any integer i, the points {fi,j|j ∈ Z} lie on a straight line. The order of the points

on this straight line is preserved, that is, the point fi,j lies between the points fi,j−1 and

fi,j+1. The same holds for the points {fi,j|i ∈ Z2}. These lines form the lines of the IC

net.
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2. All the unit net-squares �i,j are circumscribed. The inscribed circle in the unit net

square �i,j is denoted by ωi,j and by oi,j its center.

From the Theorem 9, we observe that if the lines mj, mj+1, li and li+1 are tangent to the

conic α, then the points mj ∩mj+1 and li ∩ li+1 belong to the same conic confocal with α.

Having this kind of property, we are able to give a global definition of the IC net.

Definition 17 ([1], Definition 2.3). Let α and α ′ be two confocal conics. Let mj and li be

tangent lines to α such that the intersection points mj ∩mj+1 and li ∩ li+1 belong to α ′. The

lines mj and li, i, j ∈ Z, are called the lines of an IC net and its vertices are the points of

the form fi,j = li ∩mj.

Lemma 27. Consider a quadrilateral formed by four tangent lines to a given conic α such

that such quadrilateral is divided into four small quadrilaterals by two other tangent lines to

α. Suppose that three of these four quadrilaterals are circumscribed (see Figure 3.6). Then

the fourth quadrilateral is also circumscribed.

Figure 3.6: The quadrilateral (f1,1f2,1f2,2f1,2) is also circumscribed.

Proof. Let denote by l0, l1, l2, m0, m1 and m2 the tangent lines to the conic α. Then

the big quadrilateral formed by tangent lines l0, l2, m0 and m2 has the vertices f0,0, f2,0,
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f2,2, f0,2. Let the coordinates of tangency points on α be x0, x1, x2, y0, y1, y2 so that

f1,0(x1, y0), f2,1(x2, y1), f1,2(x1, y2), f0,1(x0, y1). Notice that the quadrilaterals (f0,0f1,0f1,1f0,1),

(f1,0f2,0f2,1f1,1) and (f0,1f1,1f1,2f0,2) are circumscribed. By the Graves-Chasles theorem , the

pairs of points f1,2 and f0,1, f0,1 and f1,0, and f1,0 and f2,1 lie on conics confocal with α.

Assume that the conics passing through these pairs of points are ellipse, hyperbola, and

ellipse, respectively. We utilize the same arguments to demonstrate the other cases. Since

the pairs of points f0,1 and f1,2, and f1,0 and f2,1 lie on ellipses and the points f0,1 and f1,0 lie

on same hyperbola, we have the following equations respecting the order of these pairs of

points

y1 − x0 = y2 − x1, (3.4a)

y1 − x2 = y0 − x1, (3.4b)

y1 + x0 = y0 + x1. (3.4c)

Substracting the equations (3.4a) and (3.4b) and then adding that result to the equation

(3.4c), we obtain

x1 + y2 = x2 + y1.

The last equation shows that the points f1,2 and f2,1 lie on the same hyperbola. Due to the

Graves-Chasles Theorem 9, the forth quadrilateral is also circumscribed. �

Theorem 28 (3 × 3 incircles incidence theorem, [1]). Consider a quadrilateral such

that such quadrilateral is split into nine quadrilaterals by two pairs of lines l1 and l2, and

m1 and m2. Assume that all quadrilaterals are circumscribed, except one at a corner (see

Figure 3.7). Then it turns out that such quadrilateral at the corner is also circumscribed.

Proof. We know that a conic is defined by any five lines such that no three of which are

concurent. Let denote by α the conic determined by the lines l0, l1, l2, m0 and m1. First,

we need to show that all the lines in the 3 × 3 incircles incidence theorem are tangent to
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Figure 3.7: 3× 3 incircles incidence theorem.

α. Note that the lines m0, m1 and l2 are sides of the quadrilateral (f2,0f3,0f3,1f2,1) and

these lines are tangent to α. Applying Corollary 10, the line l3 = (f3,0f3,1) is the forth

side of the quadrilateral (f2,0f3,0f3,1f2,1). Repeating this argument several times, we will

prove that all lines of the 3 × 3 incircles theorem are tangent to α. It remains to show

that the quadrilateral formed by the lines l2, l3, m2 and m3 is circumscribed. Consider the

quadrilateral (f1,1f3,1f3,3f1,3). It is clear that this quadrilateral is cut by the lines l2 and m2

into four small quadrilaterals such that three of them are circumscribed. Then, it follows

directly from Lemma 27 that the quadrilateral (f2,2f3,2f3,3f2,3) is circumscribed. �

The Theorem 29 is a new formulation of the Theorem 26 and shows us a natural way to

construct an IC net.

Theorem 29 ([1], Corollary 2.10). Two neighboring circles ω0,0, ω1,0 and their five tangent

lines l0, l1, l2, m0, and m1 uniquely determine an IC net (see Figure 3.8).
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Figure 3.8: Construction of an IC net.

Now, let us list the geometric and combinatorial properties of the IC nets.

Theorem 30 ([1], Theorem 2.1). Let f be an IC net. Then f satisfies the following properties:

1. All lines of the IC net f touch some conic α (the conic α can be degenerate).

2. The points fi,j, where i+ j=constant, belong to a conic confocal with α. The point fi,j,

where i− j=constant, also belong to a conic confocal with α.

3. All net-squares of f are circumscribed.

4. In any net-square with even sides, the midlines have equal lengths

|fi−c,jfi+c,j| =|fi,j−cfi,j+c|.

5. The cross ratios

cr(fi,j1 , fi,j2 , fi,j3 , fi,j4) =
(fi,j1 − fi,j2)(fi,j3 − fi,j4)

(fi,j2 − fi,j3)(fi,j4 − fi,j1)

is independent of i. The cross ratios cr(fi1,j, fi2,j, fi3,j, fi4,j) is also independent of j.
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Proof. 1. The statement is proven in the same way as the 3× 3 incircles incidence theorem.

2. For the second property of the IC net, we will only show that the points fi,j, with i+j = 5,

lie on the same conic confocal with α. The remaining cases can be proven similarly. Here

in particular, we need to show that the three points f1,4, f2,3 and f3,2 lie on the same conic

confocal with α as we see in Figure 3.9. Without loss of generality, we assume that the pairs

Figure 3.9: Three points belong to the same conic.

of points f1,2 and f2,3, and f2,1 and f3,2 lie on the ellipses confocal with α and the pairs points

f1,2 and f2,1, and f2,3 and f3,2 lie on the hyperbolas confocal with α. Since the quadrilateral

(f1,3f2,3f2,4f1,4) is circumscribed, there exists a conic confocal with α passing through the

vertices f2,3 and f1,4. This conic is either an ellipse or a hyperbola. Suppose that this conic

is a hyperbola. Let denote by γ1 and γ2 the hyperbolas which contain the pairs of points

f3,2 and f2,3, and f2,3 and f1,4, respectively. Clearly, γ1 and γ2 intersect at the point f2,3.

However, they are confocal, therefore they must coincide. Suppose now that the conic is an

ellipse. Denote by β1 and β2 the respective ellipses that pass through the pairs of points f1,2

and f2,3, and f2,3 and f1,4. Then the point f2,3 is a common point of these ellipses. These

ellipses must be different since they are confocal ellipses and the confocal ellipses cannot
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have a common point. Let x0, x1, x2, y0, y1 and y2 be the canonical coordinates of the

tangency points of the lines l0, l1, l2, m2, m3, m4 with α respectively. Since the points f1,2,

f2,3 and f1,4 belong to the same ellipse, we obtain the following equations

y0 − x1 = y1 − x2, (3.5a)

y2 − x1 = y1 − x2. (3.5b)

The equations (3.5a) and (3.5b) imply that y0 = y2, so the points f1,4 and f1,2 coincide,

which is a contradiction.

3. We have already proved that all lines of the IC net f touch the conic α and all

the points fi,j lie on some conics confocal with α. It follows that all net-squares of f are

circumscribed according to the Graves-Chasles Theorem 9.

4. One of the properties of the IC net f is that all of its points fi,j belong to the conics

confocal with α. Apart from that, each of these points is the intersection point of an ellipse

and a hyperbola. Indeed, the points fi−c,j, fi,j−c, ffi+c,j and fi,j+c are intersection points of

pairs of confocal ellipses and hyperbolas. Due to Ivory’s theorem, we obtain

|fi−c,jfi+c,j| =|fi,j−cfi,j+c|.

5. Let A, B, C, D and E be points on the conic α (see Figure 3.10). Let li1 be a tangent

line to α at the point E. Then the tangent lines at the points A, B, C and D intersect the

tangent line li1 at the points fi1,j1 , fi1,j2 , fi1,j3 and fi1,j4 , respectively. One has already proved

that

cr(fi1,j1 , fi1,j2 , fi1,j3 , fi1,j4) = cr(A,B,C,D).

This equality means that there exists a projective transformation p1 which maps the point A

to fi1,j1 , B to fi1,j2 , C to fi1,j3 and D to fi1,j4 . Let us draw a tangent line li2 to the conic α at

a point F. Using again the previous argument, we find another projective transformation p2

which sends the point A to fi2,j1 , B to fi2,j2 , C to fi2,j3 , D to fi2,j4 . Since the set of projective
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Figure 3.10: Projective map between two tangent lines to the conic α.

transformations forms a group under the operation of composition of functions, the map

p := p2 ◦ p−11 is a projective transformation and it can be written as follows

p : (fi1,j1 , fi1,j2 , fi1,j3 , fi1,j4) 7−→ (fi2,j1 , fi2,j2 , fi2,j3 , fi2,j4).

Therefore, the cross ratio is preserved under the projective transformation p. This completes

the proof of the first statement of the property 5. The second statement can be proved in a

similar way. �

Theorem 31 ([1], Theorem 2.1). 1. Let Ck be conics such that they contain the points

fi,j, with i+ j = k. Then, for any l ∈ Z, there is an affine transformation Ak,l : Ck −→
Ck+2l such that Ak,l(fi,j) = fi+l,j+l. Furthermore, let Ck ′ be conics such that they also

contain the points fi,j, with i − j = k ′. Then, for any l ′ ∈ Z, there exists an affine

transformation Ak ′,l ′ : Ck ′ −→ Ck ′−2l ′ such that Ak ′,l ′(fi,j) = fi−l ′,j+l ′.

2. The net-squares �ci,j and �c+2li−l,j−l are perspective.
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3. Let ωi,j be the inscribed circle of the unit net-square �i,j with center oi,j. Then all

points oi,j, with i + j= constant, lie on a conic. The points oi,j, with i − j=constant,

also lie on a conic.

4. The centers of the circles inscribed in the unit net-squares of an IC net build a projective

image of an IC net.

Proof. 1. We know that there is a linear map that maps a point to a point between two

confocal conics of the same type, and a point belonging to one of these conics and its image

under the linear map lie on the same conic. Note that the type of the later conic is different

than the former conics and it is confocal with them. Moreover, each point of the IC net is

the intersection point of one ellipse and one hyperbola. Then, the statement of the theorem

follows directly from the Theorem 12.

2. Suppose that l is positive. The case for l negative can be proven the same way. The

net-square �c+2li−l,j−l is split by the net-square �ci,j into nine cells. Denote by �t, t = 1, 2, 3, 4,

the four cells in at corners. Let at, bt be the respective vertices of �ci,j and �c+2li−l,j−l. Let

ωt, Ω and Ω ′ be the inscribed circles of �t, �
c
i,j and �c+2li−l,j−l respectively. The circles ωt

and Ω have two common tangent lines and these tangent lines intersect at the point at.

Then at is the homothetic center of ωt and Ω. In addition, the circles ωt and Ω ′ have

also two common tangent lines and the point bt is the point of intersection of these lines.

Thus, the point bt is the homothetic center of ωt and Ω ′. According to the theorem on the

three centers of similarity, the line (atbt) passes through the homothety center of Ω and Ω ′.

Therefore, all lines (atbt) intersect at one point. This means that the net-squares �ci,j and

�c+2li−l,j−l are perspective.

3. and 4. Let li, li+1, mj and mj+1 be four lines of an IC net f. The Definition 17 says

that the points li ∩ li+1 and mj ∩mj+1 lie on the conic α ′ confocal with α. Denote by l ′i and

m ′j be the respective bisectors of the pairs of lines li and li+1, and mj and mj+1. The proof
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of the statement has two steps. First, we need to prove that the lines l ′i and m ′j are tangent

to the conic α ′. The lines li and li+1 are tangent to the conic α and let C and D be their

Figure 3.11: The bisector l ′i of li and li+1 is tangent to α ′.

tangency points to α respectively. We then have ∠F1LC = ∠F2LD, where F1 and F2 are foci

of the conic α. It follows that the exterior angles ∠CLD and ∠F1LF2 have the same bisector.

This bisector is the line l ′i. Now, choose an arbitrary point F on the line l ′i and draw two

tangent lines from the point F to α. Let us denote by A and E their tangency points to α.

Note that the lines li and (AF) intersect at the point B as we see in the Figure 3.11. Then,

we have the following inequalities

|FD| < |EF|+
_
|ED| and

_
|AC|< |AB|+ |BC|,

where
_
|ED| represents the length of the arc joining the points E and D. We also have

|BL| + |LD| < |BF| + |FD| since l ′i is the bisector of the exterior angle ∠BLD. Therefore, we
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obtain

|CL|+ |LD|+
_
|DC| < |CL|+ |LD|+

_
|DA| +|AB|+ |BC| = |BL|+ |LD|+

_
|DA| +|AB|

< |BF|+ |FD|+
_
|DA| +|AB| = |AF|+ |FD|+

_
|DA|

< |AF|+ |FE|+
_
|ED| +

_
|DA|= |AF|+ |FE|+

_
|EA| .

This inequality proves that the point F is outside of the conic α ′. In other words, the only

point on l ′i which lies on the conic α ′ is the point L, that is, l ′i is tangent to α ′ at L. By

using an argument similar, we can also prove that the line m ′j is tangent to the conic α ′.

Next, we need to show that the points l ′i ∩ l ′i+1 and m ′j ∩m ′j+1 belong to the conic α". From

the Proposition 13, the conics α and α ′ are confocal conics and the conic α" is a dual of α

with respect to α ′, then the points l ′i ∩ l ′i+1 and m ′j ∩m ′j+1 lie on conic α".

�

3.3 Circular and conical nets

The two-dimensional nets can be regarded as discrete analogs of curvature lines parametrized

surfaces. This section gives a quick review of two-dimensional nets called circular nets and

their main property.

Definition 18 ([3], Definition 3.1). A two-dimensional circular net is a map f : Z2 −→ R2

such that for every n0 ∈ Z2 and for every i, j ∈ {1, 2}, i 6= j, the four points f = f(n0),

fi = f(n0 + ei), fj = f(n0 + ej) and fi,j = f(n0 + ei + ej) are concircular (see Figure 3.12).

Definition 19 ([3], Definition 3.20). A conical net is a map P : Z2 → {oriented planes in R3}

such that if for every n0 ∈ Z2 and each pair of indices i, j ∈ {1, 2} with i 6= j, the four planes

P, Pi, Pij and Pj intersect at a common point and are in oriented contact with a cone of

revolution.
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Figure 3.12: A circular net.

In generic case, let us consider a vertex of valence four, such that the vertex star is not

contained in a plane. Denote by a1, a2, a3 and a4 the measure of the angles of the vertex

star in cyclic order, depicted in Figure 3.13.

Figure 3.13: A conical net.

The following theorem states the conical property at a vertex. That property can be

expressed in terms of the successive four angles a1, a2, a3 and a4 enclosed by the four edges

emanating from that vertex.

Theorem 32 ([21] Proposition 1). Consider a quadrilateral mesh and let a1, a2, a3 and a4

be the measure the of angles between the edges enclosed by the edges emanating from a vertex

in cyclic order. The quadrilateral mesh is conical if and only if for all vertices, the sums of

two opposite angles at that vertex obey a1 + a3 = a2 + a4.
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The complete proof of the Theorem 32 can be found in [37]. In the case where the four

adjacent planes are coplanar, we have additional condition: the sum of all angles at one

vertex is equal to 2π, that is, a1 + a2 + a3 + a4 = 2π. Then, in the planar case, a net is

called conical net if a1 + a3 = a2 + a4 = π.

3.4 Extended analysis of checkerboard incircular nets

A checkerboard IC net is a generalization of the IC net that we have discussed in the previous

section. The lines of the checkerboard IC net have the combinatorics of the square grid such

that every second quadrilateral is circumscribed. The main objective of this current section

is to present the way how to construct a checkerboard IC net and its geometric properties.

3.4.1 Definition and construction of a checkerboard IC net

Definition 20 ([1], Definition 3.1). A map f : Z2 −→ R2 is called a checkerboard IC net if

it satisfies the following conditions:

1. For any integer i, the points {fi,j|j ∈ Z} lie on a straight line. The order of the points

fi,j on this line is preserved, meaning that the point fi,j lies between the points fi,j−1 and

fi,j+1. This condition also holds for the points {fi,j|i ∈ Z}. These lines are called lines

of the checkerboard IC net.

2. For any integers i and j of the same parity, the quadrilateral, whose vertices are the

points fi,j, fi+1,j, fi+1,j+1, fi,j+1, is circumscribed.

Lemma 33 ([1], Lemma 3.2). Let (ABCD) be a quadrilateral such that this quadrilateral

is cut by two pairs of lines into nine quadrilaterals. Assume that the quadrilateral at the

center and all the quadrilaterals at the corners are circumscribed, ( Figure 3.14). Then the

quadrilateral (ABCD) is also circumscribed.
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Figure 3.14: Six inscribed circles lemma.

Figure 3.15: One piece of the Figure 3.14.

Proof. First, we will prove that |MN| = |EF|. The Figure 3.15 is just a piece of the Figure

3.14.

We observe that the triangles NUU ′ and FUU ′ are right triangles and |U ′N| = |U ′F|. By

Pythagorean theorem, we obtain |UN| = |UF|. It follows that |MN| = |EF|. Repeating this

argument, we can show that |IJ| = |QR|, |KL| = |ST | and |PO| = |HG|. Since all quadrilaterals

in all corners are circumscribed, we get

|RX| = |XS|, |PY| = |YQ|,

|MZ| = |ZT |, |OW| = |WN|.
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The circumscribability of the quadrilateral at the center combined with the above equalities

leads us to the following identity

|MN|+ |RQ| = |ST |+ |PO|.

Therefore,

|EF|+ |IJ| = |KL|+ |HG|. (3.6)

By using the fact that all quadrilaterals at the corners are circumscribed, we thus have the

following identities

|AE| = |AL|, |FB| = |BG|,

|HC| = |CI|, |DJ| = |DK|,

which imply that

|AE|+ |FB|+ |DJ|+ |IC| = |AL|+ |BG|+ |HC|+ |DK|. (3.7)

Adding the equations (3.6) and (3.7), we get |AB|+ |CD| = |AD|+ |BC|. The later equality

means the sum of the lengths of a pair of opposite sides of the quadrilateral (ABCD) is equal

to the sum of the lengths of the other pair of opposite sides. In other words, the quadrilateral

(ABCD) is circumscribed. �

We have mentioned in the beginning of this section that the generalization of an IC net

in planar case is a checkerboard IC net and the 3 × 3 incircles incidence theorem is one of

the geometric properties of the IC net and can be generalized as follows:

Theorem 34 ([1], Checkerboard incircles incidence theorem). Consider a quadrilateral

which is divided by two sets of four lines into 25 quadrilaterals. Suppose that all quadri-

laterals in a checkerboard pattern are circumscribed, except the one at a corner (see Figure

3.16). Then the last quadrilateral at the corner is also circumscribed.
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Figure 3.16: Checkerboard incircles incidence theorem.

Theorem 35 ([1], Corollary 3.6). Five neighboring circles ω0,0,ω2,0,ω0,2,ω2,2,ω1,1 and a

circle ω3,3, and their four tangent lines l1, l2,m1 and m2 uniquely determine a checkerboard

IC net (see Figure 3.17).

3.4.2 Geometric properties of checkerboard IC nets

Theorem 36 ([1], Theorem 3.1). The checkerboard IC net f has the following properties:

1. All net-squares are circumscribed.

2. Net-squares �ci,j and �c+2li−l,j−l are perpective, where l is an odd number.

Proof. 1. We will prove the first property by induction on c.

• For c = 1. The second condition in the definition of the checkerboard IC net shows

that all unit net-squares are circumscribed. Then the statement is true for c = 1.

• Assume now that the circumscribability is known for all net-squares of size c. We

need to prove that the net-squares of size c + 2 are circumscribed. Let divide the
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Figure 3.17: Construction of a checkerboard IC net.

quadrilateral �c+2i,j by two pairs of lines so that we can have nine pieces of quadrilaterals.

�i,j, �i,j+c+1, �i+c+1,j+c+1 and �i+c+1,j are the quadrilaterals at the corners. Since

they are unit net-squares, they are circumscribed. The quadrilateral at the center is

�ci+1,j+1. This quadrilateral is also circumscribed by the induction hypothesis. Applying

Lemma 33, the quadrilateral �c+2i,j is thus circumscribed. Therefore, all net-squares are

circumscribed.

2. The second property of the checkerboard IC net is proved in the same way as the property

of perspective of two net-squares of the IC net that we have seen in the Theorem 31. �

Before stating and proving the Ivory-type theorem of the checkerboard IC net, let us

define first the distance between two unit net-squares of the checkerboard IC net.

Definition 21 ([1], Theorem 3.1 (iv)). The distance between two unit net-squares �a,b and

�c,d of a checkerboard IC net, denoted by dC(�a,b,�c,d), is the distance between the tangency

points on a common exterior tangent line to the respective inscribed circles ωa,b, ωc,d in �a,b

and in �c,d. If a = c or b = d, then these lines are the lines of the checkerboard IC net.
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Theorem 37 ([1], Theorem 3.1 (iv)). For any (i, j) ∈ Z2, with i + j is even, and any even

integer c, the checkerboard IC net f satisfies

dC(�i−c,j,�i+c,j) = dC(�i,j−c,�i,j+c). (3.8)

Proof. Consider a net-square �c+1i,j . Let us divide this net-square by two pairs of lines into

nine quadrilaterals such that the four quadrilaterals at corners are unit net-squares and the

one at the center is net-square. According to the definition of the checkerboard IC net and

the first property in the Theorem 36, these five quadrilaterals are circumscribed. Due to

Lemma 33, the net-square �c+1i,j is circumscribed. In other words, the sums of the lengths of

its opposite sides are equal. Indeed, the sum of the lengths of two opposite sides of �c+1i,j is

equal to dC(�i,j,�i+c,j)+dC(�i,j+c,�i+c,j+c) plus the sum of the lengths of the intervals from

the corners of �c+1i,j to the touching points with the inscribed circles of the corresponding

corner unit net-squares. Then, we have

dC(�i,j,�i+c,j) + dC(�i,j+c,�i+c,j+c) = dC(�i,j,�i,j+c) + dC(�i+c,j,�i+c,j+c).

Applying this equality to the circumscribed net-squares �c+1i−c,j−c, �
c+1
i−c,j, �

c+1
i,j−c, �

c+1
i,j and

�2c+1i−c,j−c, we have the following equations

dC(�i−c,j−c,�i,j−c) + dC(�i−c,j,�i,j) = dC(�i−c,j−c,�i−c,j) + dC(�i,j−c,�i,j) (3.9)

dC(�i,j−c,�i+c,j−c) + dC(�i,j,�i+c,j) = dC(�i,j−c,�i,j) + dC(�i+c,j−c,�i+c,j) (3.10)

dC(�i,j−c,�i+c,j−c) + dC(�i,j,�i+c,j) = dC(�i,j−c,�i,j) + dC(�i+c,j−c,�i+c,j) (3.11)

dC(�i,j,�i+c,j) + dC(�i,j+c,�i+c,j+c) = dC(�i,j,�i,j+c) + dC(�i+c,j,�i+c,j+c) (3.12)

dC(�i−c,j−c,�i+c,j−c) + dC(�i−c,j+c,�i+c,j+c) = dC(�i−c,j−c,�i−c,j+c) + dC(�i+c,j−c,�i+c,j+c)

(3.13)
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Therefore, we obtain

dC(�i−c,j,�i+c,j) = dC(�i−c,j,�i,j) + dC(�i,j,�i+c,j)

= dC(�i−c,j−c,�i−c,j) + dC(�i,j−c,�i,j) − dC(�i−c,j−c,�i,j−c)

+ dC(�i+c,j−c,�i+c,j) − dC(�i,j−c,�i+c,j−c)

by (3.9) and (3.10)

= dC(�i−c,j−c,�i−c,j) + dC(�i,j−c,�i,j) − dC(�i−c,j−c,�i,j−c)

+ dC(�i,j−c,�i+c,j−c) + dC(�i,j,�i+c,j) − dC(�i+c,j−c,�i+c,j)

+ dC(�i+c,j−c,�i+c,j) − dC(�i,j−c,�i+c,j−c) by (3.11)

= dC(�i−c,j−c,�i−c,j) + dC(�i,j−c,�i,j) − dC(�i−c,j−c,�i,j−c)

+ dC(�i,j−c,�i+c,j−c) + dC(�i,j,�i,j+c) + dC(�i+c,j,�i+c,j+c)

− dC(�i,j+c,�i+c,j+c) − dC(�i+c,j−c,�i+c,j) + dC(�i+c,j−c,�i+c,j)

− dC(�i,j−c,�i+c,j−c) by (3.12)

= dC(�i,j−c,�i,j+c) + dC(�i−c,j−c,�i−c,j) − dC(�i−c,j−c,�i,j−c)

+ dC(�i,j−c,�i+c,j−c) + dC(�i+c,j,�i+c,j+c) − dC(�i,j+c,�i+c,j+c)

− dC(�i+c,j−c,�i+c,j) + dC(�i+c,j−c,�i+c,j) − dC(�i,j−c,�i+c,j−c) by (3.13)

= dC(�i,j−c,�i,j+c).

�

Theorem 38 ([1], Theorem 3.1). Let f be a checkerboard. The following properties hold:

1. The points fi,j, where the integers i and j satisfy the condition that i + j is an odd

constant, lie on a conic. This result is valid for the points fi,j with i − j is an even

constant.

2. The centers oi,j of the inscribed circles of a checkerboard IC net build a circle-conical

net.
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Proof. 1. We will show only the case where i− j = 0, since the proof of other cases is similar.

For simplicity, we will show that any successive points lie on some conic. Due to Theorem 7,

it is sufficient to prove that the intersection of the lines (f0,0f1,1) and (f3,3f4,4), (f1,1f2,2) and

(f4,4f5,5), and (f2,2f3,3) and (f5,5f0,0) are collinear.

i. (a) Consider the net-squares �0,0 and �30,0. Then, the point f0,0 is the center of

homethety of the inscribed circles in these net-squares.

(b) The point f1,1 is the homothety center of the inscribed circles of the unit-net-

square �0,0 and the net-square �31,1.

Since the homethety centers in the case (a) and in the case (b) do not coincide, due

to Theorem 22, the line (f0,0f1,1) passes through the homothety center of the inscribed

circles of the net-squares �30,0 and �31,1.

ii. (c) The point f4,4 is the center of the homothety of the inscribed circles of the net-

squares �3,3 and �31,1.

(d) The point f3,3 is the center of the homothety of the inscribed circles of the net-

squares �3,3 and �30,0.

Applying again the theorem of three centers of similarity, we obtain that the line

(f3,3f4,4) passes through the homothety center of the net-squares �31,1 and �30,0.

The combination of the results that we got in (i) and (ii) above proves that the point

(f0,0f1,1) ∩ (f3,3f4,4) is the homothety center of the net-squares �31,1 and �30,0. Using the

foregoing arguments, we can also prove that the points (f1,1f2,2) ∩ (f4,4f5,5) and (f2,2f3,3) ∩

(f5,5f0,0) are the respective homothety centers of the inscribed circles of the pairs of net-

squares �31,1 and �32,2, and �30,0 and �32,2. Finally, the three centers of the homothety lie on

a straight line according to Monge’s theorem. This shows the converse of Pascal’s theorem.

2. It is straightforward to verify that dC(�i−1,j+1,�i+1,j+1) = dC(�i,j,�i,j+2). This implies

that the distance between the points oi−1,j+1 and oi+1,j+1 is equal to the distance of the points
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oi,j and oi,j+2. Then, there exists a circle passing through these points. Therefore, the center

oi,j of the inscribed circles of a checkerboard IC net build a circular net.

We have just proved that the centers oi,j of the inscribed circles of a checkerboard IC net

form a circular quadrilateral. The sum of all angles at one vertex oi,j is equal 2π. Therefore,

if a1, a2, a3 and a4 are the measure of the angles around the vertex oi,j in the cyclic order,

then a1 + a2 + a3 + a4 = 2π. This implies that a1 + a3 = a2 + a4 = π, which means that

the net formed by the centers oi,j of the incircles of a checkerboard IC net is conical. �
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CHAPTER 4

CONFOCAL IC NETS AND CONFOCAL CHECKERBOARD IC NETS

BASED ON INTEGRABLE BILLIARDS

The main objective of this chapter is to show that a confocal IC net and a checkerboard IC

net can be constructed by using two different billiard trajectories within the same boundary

and with the same caustic. In our context, these billiard trajectories are winding either

in the same direction or in the opposite directions. A brief description of a mathematical

billiard in a plane will be discussed in the first section of this chapter and will be used in the

construction of the confocal IC net and the checkerboard IC net [18].

4.1 Billiards inside conics and the Poncelet grid

Mathematical billiard consists of a domain and a point mass that moves freely inside of the

domain. The domain and the point mass of the mathematical billiard are called a billiard

table and a billiard ball respectively [8, 9, 24, 33] and [35].

Definition 22 ([13], page 377). The motion of a point that moves freely with a constant

speed along a line segment inside of a closed region and reflects elastically at the boundary

is called billiard system. At the bouncing point, the incoming line segment and the outgoing

line segment obey the geometrical law of optics, that is, the angle of incidence and the angle

of reflection are equal, depicted in Figure 4.1 and in Figure 4.2.

Definition 23 ([13], page 381). A caustic of a billiard trajectory is a curve inside a billiard

table such that if an incoming segment of a billiard trajectory is tangent to such curve, then

each reflected segment is also tangent to it.

We assume that the billiard table and the caustic are smooth and convex.
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Figure 4.1: Billiard reflection.

Figure 4.2: The billiard table β and the caustic α are confocal ellipses.

Theorem 39 ([35], Theorem 4.4). A billiard trajectory within an ellipse forever remains

tangent to a fixed conic which is confocal with the ellipse (see Figure 4.3). In other words, if

a segment of a billiard trajectory does not intersect the segment F1F2, then all segments in this

trajectory do not intersect the segment F1F2 and are all tangent to the same caustic, which

is an ellipse with foci F1 and F2. Likewise, if a segment of a billiard trajectory intersects

the segment F1F2, then all segments of this trajectory intersect the segment F1F2 and are all

tangent to the same hyperbola with foci F1 and F2.
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Figure 4.3: Billiard trajectory within ellipse β and the caustic is α.

Proof. The proof follows the exposition from [13]. Let AA1 and A1A2 be two consecutive

segments of a trajectory such that they do not intersect the segment F1F2. According to

Figure 4.4: Proof of the theorem

Theorem 1, the angles made by the segments F1A1 and F2A1 with ellipse β are equal. Using

again Theorem 1, we can conclude that the segments AA1 and A2A1 make equal angles with

β. Then, ∠AA1F1 = ∠F2A1A2. Let F ′1 be the reflection of F1 in AA1 and F ′2 be the reflection

of F2 in A1A2. Denote B1 = (AA1) ∩ (F ′1F2) and B2 = (A1A2) ∩ (F1F
′
2). Let α1 (resp. α2) be

the ellipse, with foci F1 and F2, that is tangent to the segment AA1 (resp. A1A2) at the point
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B1 (resp. B2). Since ∠F2B1A1 = ∠AB1F
′
1 and ∠AB1F

′
1 = ∠AB1F1, ∠AB1F1 = ∠F2B1A1. This

shows that the line (AA1) meets the ellipse α1 at the point B1. Similarly, the line (A1A2)

meets the ellipse α2 at the point B2. It remains to prove that the ellipses α1 and α2 coincide.

By Theorem 1, |F ′1F2| = |F1F
′
2|. It follows that α1 and α2 coincide, which is denoted by α in

the Figure 4.4. �

Definition 24 ([33]). A polygon P is called Poncelet polygon if the polygon P is inscribed

in one ellipse and circumscribed about another ellipse.

Note that all the edges of the Poncelet polygon P are tangent to the inner ellipse and its

vertices lie on the outer ellipse.

Definition 25 ([26, 33]). Given a Poncelet polygon P and let l1, l2, · · · , ln be lines that

contain the edges of P . A set of points of the form li ∩ lj is called Poncelet grid. When i = j,

we define li ∩ lj to be the tangency point of the line li with the caustic.

Define sets

Pk =
⋃
i−j=k

li ∩ lj, Qk =
⋃
i+j=k

li ∩ lj. (4.1)

Theorem 40 (Schwartz theorem). The sets Pk and Qk have the following properties:

1. The sets Pk lie on the same nested ellipses, and the sets Qk lie on disjoint hyperbolas.

2. The complexified version of these ellipses and hyperbolas have four common complex

tangent lines.

3. All the sets Pk are projectively equivalent to each other, and likewise, all the sets Qk

are projectively to each other.

Proof. See for instance [24, 26, 33]. �
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4.2 Poncelet-Darboux grids in Euclidean plane

Theorem 41 and Theorem 42 are generalizations of Darboux theorems related to the periodic

billiards trajectories within a conic.

Theorem 41 (V. Dragović, M. Radnović). Let α be an ellipse in the Euclidean plane. Let

(lm)m∈Z and (tm)m∈Z be two sequences of segments of billiard trajectories within α and they

also share the same caustic κ. The following results hold:

1. All the points lm ∩ tm belong to one conic β confocal with α.

2. If the conic κ is an ellipse and both trajectories are winding in one direction about κ,

then β is an ellipse.

3. If the conic κ is an ellipse and both trajectories are winding in opposite directions about

κ, then β is an hyperbola.

4. If the caustic κ is a hyperbola and the segments lm and tm intersect the major axis of

α in the same direction, then β is a hyperbola.

5. If the caustic κ is a hyperbola and the segments lm and tm intersect the major axis of

α in the opposite directions, then β is a an ellipse.

Proof. We will prove the theorem by induction on m. Since the lines l0 and t0 intersect

at a point, this point belongs exactly to one ellipse and one hyperbola from the confocal

family. Knowing the orientation of the billiard motion along the lines, those lines satisfy the

reflection law on one of these two conics. Applying the Theorem 19, the lines l1 and t1 obey

the reflection law on the same conic. By the induction hypothesis, the lines lm−1 and tm−1

satisfy the reflection law on a conic. Due to the Theorem 19, the lines lm and tm satisfy also

the reflection law one the same conic. This proves (1).
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For the remaining statements, it suffices to observe the winding direction of both trajec-

tories. Note that the winding direction about an ellipse is changed by the reflections on the

hyperbolas, and preserved by the reflections on the ellipses from the confocal family. If an

oriented line is placed between the foci of conic, then this line intersects the axis containing

the foci of the conic. The direction of this trajectory is changed by the reflections on the

ellipses and preserved by the reflections of the hyperbolas. �

The Theorem 42 is more general than the Theorem 40 because in Theorem 42, the billiard

trajectory is supposed not to be closed.

Theorem 42 (V. Dragović, M. Radnović). Let (am)m∈Z be the sequence of segments of a

billiard trajectory within the ellipse α. Define the sets

Pk =
⋃
i−j=k

ai ∩ aj and Qk =
⋃
i+j=k

ai ∩ aj with k ∈ Z.

Then, the following results hold:

1. Each of the sets Pk and Qk belongs to a single conic confocal with α.

2. If the caustic κ of the trajectory am is an ellipse, the sets Pk are situated on ellipses

and Qk on hyperbolas.

3. If the caustic κ of the trajectory am is an hyperbola, then the sets Pk and Qk are situated

on ellipses for k even and on hyperbolas for k odd.

Proof. For the sets Pk, choose lm = am and tm = am+k and apply Theorem 41. Similarly,

for the sets Qk, choose lm = am and tm = am−k and apply again Theorem 41. �

4.3 Confocal IC nets and checkerboard IC nets related to billiard trajectories

The aim of this current section is to present a new method of constructing a confocal IC net

starting from two different billiard trajectories within the same conic and sharing the same
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caustic (see Figure 4.5). We do not assume that these trajectories are periodic. They are

also either winding in the same direction or in the opposite directions. And then, we will

show how to obtain a confocal checkerboard IC net from the confocal IC net [1, 18].

Definition 26 ([1], Definition 3.2). An IC net (a checkerboard IC net) is called confocal if

all lines of it are tangent to the caustic.

Figure 4.5: Confocal checkerboard IC net.

Theorem 43. Let α be an ellipse in E2, and (lm)m∈Z and (tm)m∈Z be two sequences of the

segments of billiard trajectories within α, sharing the same caustic κ. Consider a quadri-

lateral (ABCD) made by two billiard trajectories (see Figure 4.6). This quadrilateral is

divided into four small quadrilaterals. If the small quadrilaterals at the opposite corners are

circumscribed, then the quadrilateral (ABCD) is also circumscribe

Proof. Since both billiard trajectories (lm)m∈Z and (tm)m∈Z share the same caustic and have

the same boundary, the points of the form lm ∩ lm+1 and tm ∩ tm+1 lie on the boundary.

It follows that the quadrilateral formed by the lines lm, lm+1, tm and tm+1 is circumscribed
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Figure 4.6: If two small quadrilaterals at the corner are circumscribed, then big quadrilateral
is circumscribed.

according to the Grave-Chasles theorem. According to the Darboux theorem on grids, the

intersection of nth and mth sides of all such trajectories belong to an ellipse. Applying again

the Graves Chasles theorem, the other quadrilateral is also circumscribed. In the Figure 4.6,

all lines are tangent to the same caustic κ since they are lines from the the billiard trajectories.

Now, let us denote by x1, x2, x3, y1, y2 and y3 the coordinates of the points tangency of

the tangent lines (BC), (FJ), (AD), (AB), (EI) and (CD) respectively on the caustic κ so

that A(x3, y1), B(x1, y1), C(x1, y3), D(x3, y3), E(x3, y2), F(x2, y1), I(x1, y2), J(x2, y3) and

O(x2, y2). Suppose that the quadrilaterals (AEOF) and (OJCI) are circumscribed. Since

the quadrilateral (AEOF) is circumscribed, due to the Graves- Chasles theorem, the points E

and F lie on the same conic confocal with κ, say β. Suppose that both billiard trajectories are

winding in the same direction. Then, β is an ellipse according to the Theorem 41. It implies

that the points A and O lie on the same hyperbola. Therefore, we obtain the following
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equations

y2 − x3 = y1 − x2, (4.2a)

y1 + x3 = y2 + x2. (4.2b)

Notice that the equations (4.2a) and (4.2b) are identical. Using the argument above to the

circumscribed quadrilateral (OJCI), we also have

y2 − x1 = y3 − x2, (4.3a)

y2 + x2 = y3 + x1. (4.3b)

Subtracting the equations (4.2a) and (4.3a), we have y1+x3 = y3−x1. This equation shows

us that the points A and C lie on the same hyperbola. Thus, the quadrilateral (ABCD) is

circumscribed according to the Graves-Chasles Theorem. �

Remark 44. The result of the Theorem 43 does not change if we add more additional

assumptions such as fixing the direction of both trajectories and specifying type of the

caustic. For instance, if the caustic is an ellipse, then the conic β is either an ellipse or a

hyperbola depending on the direction of the billiard trajectories. Likewise, if the caustic is a

hyperbola and the both segments lm and tm intersect along the major axis of the boundary

α in the same direction, then β is a hyperbola; otherwise it is an ellipse. Moreover, the type

of the caustic and the direction of billiard trajectories determine the position of small circles

in the Figure 4.6.

Theorem 45. We use the same assumptions and terminology of the Theorem 43. The

billiard trajectories (lm)m∈Z and (tm)m∈Z form a confocal IC net. The same trajectories also

form a confocal checkerboard IC net.

Proof. First of all, notice that all lines lm and tn are tangent to the caustic κ. The first

condition in the definition of IC net is clear because the orders of the points on the lines of
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confocal IC net lm and tm are preserved (this result still holds for a confocal checkerboard

IC net). The circumscribability of the unit net-squares of those confocal nets follows from

the Theorem 43. Therefore, the billiard trajectories (lm)m∈Z and (tm)m∈Z form a confocal

checkerboard IC net and also a confocal checkerboard IC net. �
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CHAPTER 5

INTEGRABLE LINES CONGRUENCES AND NETS IN HIGHER -

DIMENSIONAL SPACE

We are concerned in this chapter with describing and investigating discrete systems which

arise from dynamics of billiards within confocal quadrics [16]. The dynamics of billiards

within confocal quadrics are linked into the concept of integrable quad-graphs [17]. The

theory of integrable systems on quad-graphs can be traced back to [3]. A quad-graph inter-

pretation of some results obtained from billiard algebra presented here leads us to discrete

systems defined on a non-cubic lattice [18, 28]. We also present generalizations of the IC nets

and the checkerboard IC nets in a space of dimension 3, inspired from the work of Böhm [39]

and the work of Akopyan and Bobenko [1]. Our new result is to give a proof of the following

statement: a division of 3-dimensional Euclidean space by planes into circumscribed cuboids

consists of three families of planes such that all planes in the same family intersect along a

line, and the three lines are coplanar (Theorem 54). Then we generalize this statement to

4-dimensional case and prove it.

5.1 Discrete line congruences and focal net

Let us begin with the basic results about the theory of discrete integrable systems on the

quad-graphs, which has been developed by Adler, Bobenko and Suris [3]. Equations on

quadrilaterals of the form

Q(x1, x2, x3, x4) = 0, (5.1)

where Q is a polynomial of degree one in each variable, are called quad-equations. The field

variables x1, x2, x3 and x4 are assigned to the vertices of a quadrilateral, as depicted in the

Figure 5.1.
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Figure 5.1: Quad-equation Q(x1, x2, x3, x4) = 0.

The function Q satisfies the linearity assumption and is an irreductible polynomial of

degree one in each variable, then the equation 5.1 can be solved for each variable. The

solution of this equation is also a rational function of the other three variables. Let (a, b, c, d)

be a solution of the equation 5.1. This solution is called singular with respect to xi if the

following equation holds

∂Q

∂xi
(a, b, c, d) = 0. (5.2)

Now, let us present the notion of 3D-consistency. In this case, six different quad-equations

are assigned to the faces of coordinate cube (see Figure 5.2).

Figure 5.2: 3D-consistency
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Given x, x1, x2 and x3, we can determine the values of x12, x13, and x23 from the three

following quad-equations

Q(x, x1, x12, x2) = 0, Q(x, x1, x13, x3) = 0, Q(x, x2, x23, x3) = 0.

And then, the value of x123 can be determined by the remaining of quad-equations, which

are

Q(x1, x12, x123, x13) = 0, Q(x2, x12, x123, x23) = 0, Q(x3, x12, x123, x23) = 0.

Notice that the value of x123 obtained for each quad-equation may be different. For given

data x, x1, x2 and x3, we say that the system is 3D-consistent if the value of x123 obtained

from last three quad-equations above coincide.

From now, our interest focuses on the geometric version of the quad-graphs. Lines in P3

play the role of the vertex fields. Let us denote by L3 the space of lines in RP3.

Definition 27 ([3], Definition 2.9). A 3-dimensional discrete line congruence in RP3 is a

map l : Z3 −→ L3 satisfying that every two neighboring lines l(n0) and l(n0 + ei) intersect

for every n0 ∈ Z3 and for each i ∈ {1, 2, 3}, equivalently, they are coplanar.

Notice that discrete line congruence in two-dimensional is called generic if any pairs of

lines such as l and l12, and l1 and l2 do not intersect. This implies that each of these pairs

span a three-dimensional space such that the lines l, l1, l2 and l12 lie in that space. This

result is still true in higher-dimensional space. The generalization of the lines congruences

and the way it is constructed in m-dimensional space, with m ≥ 2, can be found in [3].

Any two neighboring lines l(n0) and l(n0 + ei) intersect exactly at one point in RP3.

We denote the point of intersection of two neighboring lines by F(i) = F(n0, n0 + ei) =

l(n0) ∩ l(n0 + ei).

Definition 28 (Focal net). Given a discrete line congruence l : Z3 −→ L3, the map

F(i) : Z3 −→ L3 defined by F(i) = l(n0) ∩ l(n0 + ei) is called its i-th focal net.
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The focal net has the following property.

Theorem 46 ([3], Theorem 2.14). Given a discrete line congruence l : Z3 −→ L3, all its

focal nets F(k) : Z3 −→ L3, with k ∈ {1, 2, 3}, are Q-nets.

Figure 5.3: Quadrilateral of k-th focal net.

Proof. For the k-th focal net F(k), we first need to prove that all quadrilaterals of the form

(F(k)F
(k)
i F

(k)
ik F

(k)
k ), with i 6= k, are planar (see Figure 5.3). By definition, we have

F(k) = l(n0) ∩ l(n0 + ek), F
(k)
k = l(n0 + ek) ∩ l(n0 + 2ek),

F
(k)
i = l(n0 + ei) ∩ l(n0 + ei + ek), F

(k)
ik = l(n0 + ei + ek) ∩ l(n0 + ei + 2ek).

Then, the pairs of points F(k) and F
(k)
k , and F

(k)
i and F

(k)
ik lie respectively on the lines lk and

lik. Since the lines lk and lik intersect, they span a plane. Therefore, all the four points lie

in the same plane spanned by the lines lk and lik.

Next, for i 6= j and j 6= k, we want to show that all quadrilaterals of the form (F(k)F
(k)
i F

(k)
ij F

(k)
j )

are planar. We suppose that the line congruence l is generic. Then, all four points lie in

each of the three-dimensional spaces

Sij = span(l, li, lj, lij) and τkSij = span(lk, lik, ljk, lijk),
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where τk is a translation in a standard manner. Notice that both three-dimensional spaces

above lie in the four-dimensional space Sijk = span(l, li, lj, lk). Thus, the intersection of

these spaces is a plane. Therefore, the four points lie in such plane. �

5.2 Double reflection nets

We assume that a family of quadrics is given in P3. The Theorem 16 states that any line in

P3 touches two quadrics from the family. Let L be the set of all lines touching the two fixed

quadrics from the pencil.

Definition 29 ([17], Definition 5.1). A map ϕ : Z3 → L is called a double reflection net, if

there exist three quadrics Q1, Q2, Q3 from the confocal pencil, and ϕ satisfies the following

conditions:

1. a billiard trajectory within Qj is represented by sequence {ϕ(n0+iej)}i∈Z for j ∈ {1, 2, 3}

and n0 ∈ Z3,

2. lines ϕ(n0), ϕ(n0 + ei), ϕ(n0 + ej) and ϕ(n0 + ei + ej) constitute a double reflection

configuration, for all i, j ∈ {1, 2, 3} with i 6= j and n0 ∈ Z3.

The detailed construction of this double reflection nets can be found in [17]. Now,

consider a double reflection net ϕ : Z3 → L, for given n0 ∈ Z3 and three distinct indices

i, j, k ∈ {1, 2, 3}, there exist in total twelve focal nets and they are expressed as follows

F1 = ϕ(n0) ∩ϕ(n0 + e1), F12 = ϕ(n0 + e2) ∩ϕ(n0 + e2 + e1),

F13 = ϕ(n0 + e3) ∩ϕ(n0 + e3 + e1), F123 = ϕ(n0 + e2 + e3) ∩ϕ(n0 + e2 + e3 + e1),

F2 = ϕ(n0) ∩ϕ(n0 + e2), F21 = ϕ(n0 + e1) ∩ϕ(n0 + e1 + e2),

F23 = ϕ(n0 + e3) ∩ϕ(n0 + e3 + e2), F213 = ϕ(n0 + e1 + e3) ∩ϕ(n0 + e1 + e3 + e2),

F3 = ϕ(n0) ∩ϕ(n0 + e3), F31 = ϕ(n0 + e1) ∩ϕ(n0 + e1 + e3),

F32 = ϕ(n0 + e2) ∩ϕ(n0 + e2 + e3), F321 = ϕ(n0 + e2 + e1) ∩ϕ(n0 + e2 + e1 + e3).
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These focal nets can be organized in three quadruplets of points in the following manner:

(F1, F12, F13, F123), (F2, F21, F23, F213), (F3, F31, F32, F321).

Notice that the points in each quadruplet are coplanar according to the Theorem 46 and

also belong to the same quadric Q1, Q2 and Q3 respectively. The second condition in the

definition of the double reflection allows to express the twelve points above in the following

form

F1 = ϕ(n0) ∩ϕ(n0 + e1), F12 = ϕ(n0 + e2) ∩ϕ(n0 + e1 + e2),

F13 = ϕ(n0 + e3) ∩ϕ(n0 + e1 + e3), F123 = ϕ(n0 + e2 + e3) ∩ϕ(n0 + e1 + e2 + e3),

F2 = ϕ(n0) ∩ϕ(n0 + e2), F21 = ϕ(n0 + e1) ∩ϕ(n0 + e1 + e2),

F23 = ϕ(n0 + e3) ∩ϕ(n0 + e2 + e3), F213 = ϕ(n0 + e1 + e3) ∩ϕ(n0 + e1 + e2 + e3),

F3 = ϕ(n0) ∩ϕ(n0 + e3), F31 = ϕ(n0 + e1) ∩ϕ(n0 + e1 + e3),

F32 = ϕ(n0 + e2) ∩ϕ(n0 + e2 + e3), F321 = ϕ(n0 + e1 + e2) ∩ϕ(n0 + e1 + e2 + e3).

It is straightforward from the construction of these points to see that

1. there are eight triplets of points such that the points in each triplets are collinear

(F1, F2, F3), (F1, F21, F31), (F3, F13, F23), (F21, F12, F321),

(F321, F213, F123), (F23, F32, F123), (F2, F12, F32), (F13, F31, F213).
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2. there are eight lines that can be organized in six quadruplets and the lines in each

quadruplet satisfy the double reflection configuration

{ϕ(n0), ϕ(n0 + e1), ϕ(n0 + e2), ϕ(n0 + e1 + e2)},

{ϕ(n0), ϕ(n0 + e1), ϕ(n0 + e3), ϕ(n0 + e1 + e3)},

{ϕ(n0 + e1), ϕ(n0 + e1 + e2), ϕ(n0 + e1 + e3), ϕ(n0 + e1 + e2 + e3)},

{ϕ(n0 + e2), ϕ(n0 + e1 + e2), ϕ(n0 + e2 + e3), ϕ(n0 + e1 + e2 + e3)},

{ϕ(n0), ϕ(n0 + e2), ϕ(n0 + e3), ϕ(n0 + e2 + e3)},

{ϕ(n0 + e3), ϕ(n0 + e1 + e3), ϕ(n0 + e2 + e3), ϕ(n0 + e1 + e2 + e3)}.

Theorem 47. Let ϕ : Z3 → L be a double reflection net, n0 ∈ Z3 and three distinct indices

i, j, k ∈ {1, 2, 3}. The points F1, F2, F3, F12, F13, F21, F23, F31, F32, F123, F213 and F321, and

the lines ϕ(n0), ϕ(n0 + e1), ϕ(n0 + e2), ϕ(n0 + e1 + e2), ϕ(n0 + e3), ϕ(n0 + e1 + e3),

ϕ(n0 + e2 + e3) and ϕ(n0 + e1 + e2 + e3) form a cuboid in dual projective space.

Proof. A cuboid is composed of six faces that meet each other and has eight vertices and

twelve edges. In our context, the eight lines represent the vertices and the twelve points

correspond to the edges of the cuboid. The six quadruplets of lines represent the faces of

the cuboid since the four lines in each quadruplet form a double reflection reflection. �

A group structure on a set of lines in a 3-dimensional Euclidean space such that all lines

in such set are simultaneously tangent to two quadrics from a given confocal family 2.15 is

called billiard algebra. This billiard algebra can be constructed by utilizing the Theorem 19

and some other billiard constructions. Moreover, a fundamental property of such set of lines

is that any two lines in that set can be obtained from each other by at most two billiard

reflections at some quadrics from the confocal family [15]. The next theorem, called Six-

pointed star theorem, is a quad-graph interpretation of some results obtained using billiard

algebra. This theorem can be found in [16, 17, 18] and the references therein.
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Theorem 48 (Six-pointed star theorem). Let F be a family of confocal quadrics in

projective space P3. Then there are configurations of twelve planes in projective space P3

having the following properties:

1. These planes are organized in eight triplets, such that each plane in a triplet is tangent

to a different quadric from F and the three touching points are collinear. In addition,

every plane in the configuration belongs to two different triplets.

2. These planes are also organized in six quadruplets: all planes in each quadruplets belong

to the same pencil and are tangent to two different quadrics from F . Each plane in

the configuration is member of two different quadruplets.

This configuration is determined by three planes which are tangent to three different quadrics

from F , with collinear touching points.

Proof. Let Q1, Q2 and Q3 be three quadrics from F , and P1, P2 and P3 be the respective

tangent planes such that the touching points A1, A2 and A3 are collinear. Let x be the

line that contains those points. Then lines x1, x2 and x3 are obtained from x by the billiard

reflection off Q1, Q2 and Q3 at the points A1, A2 and A3 respectively. Due to the Proposition

21, the lines x12, x13, x23 and x123 are well determined. The twelve planes of the configuration

are thus tangent to corresponding quadrics at the points of intersection of the lines. �

In the dual projective space (P3)∗, the configuration of the planes in the six-pointed

theorem is depicted in Figure 5.4.

The Figure 5.4 consists of twelve vertices, six edges and eight triangles, which are de-

scribed in following manner.

• Twelve vertices: Each plane that is tangent to one of the quadrics Q1, Q2 and Q3

corresponds to a vertex of the polygonal line in the configuration of planes from the

six-pointed star theorem, and a pair of lines are assigned to it. The lines in each pair
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Figure 5.4: Configuration of planes of the six-pointed star theorem.

are reflected to each other off the quadric at the tangency point with the assigned

plane.

• Eight triangles: The three planes assigned to the vertices of any triangle are touching

the corresponding quadrics at three collinear points. Thus the line which contains these

points is naturally assigned.

• Six edges: Each edge contains four vertices. The four planes assigned to the four ver-

tices of one edge belong to the same pencil. Therefore, they satisfy a double reflection

configuration.

The next theorem is the 3D-consistency of the quad-relation by use of the double reflection

configuration, meaning that the reflections off the three quadrics Q1, Q2 and Q3 commute.

Theorem 49 ([17], Theorem 4.2). Let x, x1, x2 and x3 be lines in the projective space

P3 such that x1, x2 and x3 are obtained from x by reflections off confocal quadrics Q1, Q2

74



and Q3 respectively. Let introduce lines x12, x13, x23 and x123 such that the four quadruplets

{x, x1, x12, x2}, {x, x1, x13, x3}, {x, x2, x23, x3} and {x1, x12, x123, x13} are double reflection config-

urations. Then the two quadruplets of lines {x2, x12, x123, x23} and {x3, x13, x123, x23} are also

double reflection configurations.

Proof. It follows immediately from the Theorem 48. �

Assume that each plane in the Theorem 48 is assigned to the mid-point of the correspond-

ing edge of a cube, then each plane represents a vertex of a cuboctahedron (see Figure 5.5).

Notice that the cuboctahedron is one of the Archimedian solids and it is also circumscribed.

Figure 5.5: A different configuration of the planes from the six-pointed star theorem.

This latest configuration of planes from the six-pointed star theorem leads us to some analy-

sis of the lattice of hyper-planes because the cuboctahedra will represent the building blocks

for such lattice.

5.3 Hyper-plane billiard nets

According to [20], in a three-dimensional space, an infinite set of polyhedra that fit together

to fill the whole space just once such that every face of each polyhedron belongs to one other
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polyhedron is called honeycomb. If the cells of a honeycomb are regular and equal, then

the honeycomb is called regular. Given a regular honeycomb. A polyhedron is called vertex

figure of the honeycomb if its vertices are the mid-points of all the edges that emanate from

a given vertex and its faces are the vertex figure of the cells which surround the given vertex.

On the other hand, a honeycomb is said to be quasi-regular if its cells are regular and its

vertex figures are quasi-regular. For the quasi-regular honeycomb, the vertex figures are all

alike and it has two kinds of cells that are arranged alternately.

Following [28], let us consider a lattice Z3 in R3. This lattice generates a regular hon-

eycomb consisting of 3-cubes. Then the set of all mid-points of the edges of the cubes is

expressed as follows

M 3 =

3⋃
i=1

(
Z3 +

1

2
ei

)
.

A honeycomb determined by the lattice M 3 is characterized by two type of polytopes: cuboc-

tahedra and octahedra. The vertices of each cuboctahedron are mid-points of the edges of a

3-cube in the lattice Z3 and the vertices of each octahedron are mid-points of all edges with

a common endpoint in Z3. This honeycomb is shown in Figure 5.6.

Suppose that we have a double reflection net and we introduce the following maps

H : M 3 −→ (P3)∗, P : M 3 −→ (P3)∗.

The map H assigns to the mid-point of the edge (n0, n0+ei) the tangent plane to the quadric

Qi at the point of reflection, while the map P assigns the intersection point ϕ(n0)∩ϕ(n0+ei)

to the mid-point of the edge (n0, n0 + ei).

Proposition 50 ([28], Proposition 3.1). The two maps H and P satisfy the following

properties:

1. For each square 2-face of any cuboctahedron, H assigns to its vertices hyperplanes that

belong to same pencil and form a harmonic quadruple. The hyperplanes corresponding

to the opposite vertices are tangent to the same quadrics from the confocal family.
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Figure 5.6: Honeycomb consisting of cuboctahedra and actahedra.

2. The hyperplanes assigned to any two adjacent vertices of a square 2-face uniquely de-

termine the hyperplanes assigned to the other two vertices.

3. For each octohedron of the honeycomb, P assigns to all its vertices collinear points.

The points assigned to the opposite vertices are on the same quadric from the confocal

family.

Proof. The proof of this proposition also follows from the Theorem 48. �

5.4 Circumscribed cuboids net in space

We know that a polyhedron can be defined as a finite connected set of polygons satisfying

that every side of each polygon belongs to just one other. A polyhedron is called a cuboid

if it is combinatorial equivalent to a cube [36]. If the cuboid possesses an inscribed sphere,

we call it circumscribed cuboid. The subject of the circumscribed cuboids nets was intro-

duced by Wolfgang Böhm in 1965 [39], which is a way of a generalization of circumscribed

quadrilaterals nets. Our main focus of the present section is to investigate the geometric

77



properties of such nets. Before reformulating and proving these properties, let us begin with

two well-known theorems, Monge’s theorem in space and Daniel Sleator’s theorem, which

play an important role in the proof of our main results.

Theorem 51 (Monge’s theorem). Consider three spheres of different radii lying completely

outside each other and their centers are not collinear. Then the three external centers of

similitude are collinear.

The complete proof of this theorem can found in many different books of geometry

and in different articles. One version of proof can be seen in [32]. The next theorem is a

consequence of the previous theorem. It concerns about centers of similitude for four spheres

in three-dimensional space.

Theorem 52 (D. Sleator). If four spheres are given in an Euclidean space such that they lie

completely outside each other, then the six external centers of similitude of pairs of spheres

are coplanar.

Proof. By following the exposition in [32], we first note that a sphere in three-dimensional

space depends upon four parameters. These parameters are the coordinates of the center of

the sphere in the Euclidean space E3 and its radius. The radius of a given sphere is either

positive or negative. Then, we can map spheres in E3 onto points of E4. This means that

any sphere in E3 with center (a, b, c) and radius r can be mapped onto a point (a, b, c, r) in

E4. If the sphere has radius zero, then we call it point-sphere. Thus, the points-spheres are

represented by points in E3 and their representations coincide with themselves. The map

which maps spheres in E3 onto points of E4 can be constructed as follows.

1. We set up an orthagonal Cartesian axes Ox,Oy,Oz,Ow. The spheres that we consider

lie in the Oxyzw hyperplane.
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2. A pair of spheres with centers (a1, b1, c1) and (a2, b2, c2) and radii r1 and r2 defines a

system of spheres with centers (λa1+µa2, λb1+µb2, λc1+µc2) and radii (λr1+µr2),

where λ + µ = 1. Then, two spheres determine a system and the point-sphere is a

center of the similitude. Also, the system of spheres in E4 is represented by a line

passing through the points which represent the two spheres. Note that four spheres in

E3 determine a system with three degrees of freedom and the representation of theses

spheres in E4 is a hyperplane containing the lines which represent two spheres systems

and hence the centers of similitude. These centers of similitude are point-spheres and

are contained in Oxyzw hyperplane. Therefore, the intersection of the two hyperplanes

is a plane. This complete the proof of the theorem.

�

Definition 30. A family of planes is a collection of planes satisfying the condition that all

planes intersect along a line (see Figure 5.7).

Figure 5.7: One family of planes.

Note that all net-cubes are projective images of the standard cubes. A cube in three-

dimensional space has three infinity points.

79



Lemma 53. One face plane of a circumscribed cuboid (resp. a projective cube) is uniquely

determined by its five given face planes.

Theorem 54. A division of an Euclidean space by planes into circumscribed cuboids neces-

sarily consists of three families satisfying the conditions:

1. all planes for each family intersect along a line,

2. the three lines are coplanar.

Figure 5.8: Circumscribed cuboids net.

The Figure 5.8 represents a circumscribed cuboids net in 3-dimensional Euclidean space.

Proof. 1. Let M1, M2, N1, N3, P1 and P3 be face planes of a cuboid, and M2, N2 and P2 be

three different planes which divide it into eight circumscribed cuboids. Let define

m12 =M1 ∩M2, m23 =M2 ∩M3,

n12 = N1 ∩N2, n23 = N2 ∩N3,

p12 = P1 ∩ P2, p23 = P2 ∩ P3.

All possible external centers of similitude for each pair of spheres are shown in the Table 5.1.
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Table 5.1: External centers of similitude of all pairs of spheres.

Spheres Centers of similitude Spheres Centers of similitude
S1, S2 A S3, S5 S

S1, S3 B S3, S6 X

S1, S4 C S3, S7 Y

S1, S5 D S3, S8 Z

S1, S6 E S4, S5 V

S1, S7 F S4, S6 W

S1, S8 I S4, S7 U

S2, S3 J S4, S8 A ′

S2, S4 K S5, S6 B ′

S2, S5 L S5, S7 C ′

S2, S6 O S5, S8 D ′

S2, S7 Q S6, S7 E ′

S2, S8 R S6, S8 F ′

S3, S4 T S7, S8 I ′

Step 1: 1. Consider the cuboid whose face planes are M1,M2, N1, N3, P1 and P3. This

kind of cuboid is split by the planes N2 and P2 into four circumscribed cuboids. Since the

four inscribed spheres lie completely outside each other, by Theorem 52, their six external

centers of similitude are coplanar. The six external centers of similitude of pairs of spheres are

A,B,C, J, K and T due to the Table 5.1. The planes M1 and M2 are also common external

tangent planes for all inscribed spheres, these external centers of similitude thus lie on a
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straight line. This line is the line m12. However, the plane P2 is an external tangent plane

of the pairs S1 and S3, and S2 and S4. This implies that the external centers of similitude B

and K lie in three different planes M1,M2 and P2. Notice that the lines M1∩P2 and M2∩P2

are different. Then, m12 /∈ P2. Therefore, the points B and K must coincide. The plane N2

is also a common external tangent plane of the pairs of spheres S1 and S2, and S3 and S4,

and A and T are their respective external centers of similitude. We know that A, T ∈ m12

and they also lie in the planes M1,M2 and N2, with M1 ∩N2 6=M2 ∩N2, then m12 /∈ N2.

Therefore, A must coincide with the T .

2. Consider the cuboid formed by the planes M2,M3, N1, N3, P1 and P3. This cuboid is

divided by the planes N2 and P2 into four circumscribed cuboids. By using the foregoing

arguments, we can prove that the line m23 contains the six external centers of similitude

B ′, C ′, D ′, E ′, F ′ and I ′ of the pairs of spheres inscribed in that cuboid. Using the fact that

the plane P2 is common external tangent plane of pairs of spheres S5 and S6, and S7 and S8,

we can prove that the external centers of similitude B ′ and I ′ coincide. Similarly, the plane

N2 is a common external tangent plane of the pairs of spheres S5 and S7, and S6 and S8,

then the points C ′ and F ′ also coincide. Thus, there are four external centers of similitude

B ′, C ′, D ′ and E ′ lying on the line m23.
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Step 2: 1. Consider the cuboid formed by the planes N1, N2,M1,M3, P1 and P3. This

cuboid is divided by the planes M2, and P2 into four circumscribed cuboids. Then, the

six external centers of similitude A,D, E, L,O and B ′ lie on the line n12. Using the same

arguments as in step 1, we prove that the pairs of external centers of similitude D and O, and

A and B ′ coincide. Indeed, the line n12 contains four external centers of similitude A,D, E

and L.

2. Repeating the preceding arguments to the cuboid formed by the planesN2, N3,M1,M3, P1

and P3 and using the fact that the planesM2 and P2 divide it into four circumscribed cuboids,

we can demonstrate that the line n23 contains the four external centers of similitude T,A ′, U

and Z of the inscribed spheres in such cuboid since the external centers of similitude T and

I ′ coincide, and the external centers of similitude A ′ and Y coincide as well.

Step 3: Let us consider the two following cuboids. Following all steps in the step 1 and

using a similar argument, we can show that the external centers of similitude D, Y, O and

A ′ coincide. Therefore, the external centers of similitude B, D, S and F lie on the line p12
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and the external centers of similitude K, O, W and R lie on the line p23. By combining all

results obtained in the three steps above, we have the coincidence of the following external

centers of similitude

B ≡ K ≡ C ′ ≡ F ′,

A ≡ T ≡ B ′ ≡ I ′,

D ≡ O ≡ A ′ ≡ Y.

Indeed,

A,B,C, J ∈ m12, and A(≡ B ′), B(≡ C ′), D ′, E ′ ∈ m23, (5.3)

A,D, E, L ∈ n12, and A(≡ T), D(≡ Y), U, Z ∈ n23, (5.4)

B,D, S, F ∈ p12, and B(≡ K), D(≡ O), R,W ∈ p23. (5.5)

To ensure that the lines m12 and m23 are identical, we need to verify that the points A and B

do not coincide. Assume that they coincide. This implies that A ≡ B lies in the planes M1,

M2, N2 and P2. This means that N2 and P2 becomes respectively an external tangent plane

for each pair of spheres S1and S2, and S1 and S3. Then we get a contradiction because these

planes are by assumptions the respective internal tangent plane for those pairs. Therefore,

A does not coincide with B. For the rest, we use the same argument. This proves that

the planes M1, M2 and M3 intersect along a line, that means that they belong to the same

family of planes. That result is still true for the two triplets of planes N1, N2 and N3, and

P1, P2 and P3. The coplanarity of these three lines immediately follows from (5.3), (5.4) and

(5.5). �

Theorem 55 (Böhm, [39]). 1. The circumscribed cuboids net is uniquely determined by

one of its circumscribed cuboids.

2. Each cuboid, which can be divided by three planes from different families into eight

circumscribed cuboids, is itself circumscribed.
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5.5 Circumscribed hyper-cuboids in 4-dimensional space

Definition 31. A family of hyperplanes in a 4-dimensional space is called nice if there is

a 2-dimensional plane that is the intersection of all of them.

Theorem 56. A division of a 4-dimensional Euclidean space by hyperplanes into circum-

scribed 4-cuboids consists of four families of hyperplanes satisfying the following conditions:

1. All four families of hyperplanes are nice.

2. The four 2-dimensional planes lie in a space of dimension 3.

Before demonstrating the above theorem, let us state and prove the following proposi-

tions.

Proposition 57. Consider a 4-cuboid in a 4-dimensional space formed by the hyperplanes

A1, A2, B1, B3, C1, C3, D1 and D3. Let denote by B2, C2 and D2 the hyperplanes which divide

this 4-cuboid into eight circumscribed 4-cuboids. Then, among the 28 external centers of

similitude, there are three quadruplets of external centers of similitude such that all external

centers of similitude in each quadruplet coincide.

Proof. The inscribed spheres S3 and the 3-faces of the 4-cuboids in the Proposition 57 are

indicated in the Table 5.2.

All hyper-spheres lie completely outside each other, then one proves that the 28 external

centers of similitude of these hyper-spheres lie in a space of dimension 3. By using the

fact that the hyperplanes A1 and A2 are common tangent to all the eight hyper-spheres Si,

i ∈ {1, 2, · · · 8}, we can conclude that the 28 external centers of similitude must lie in an

2-dimensional plane. Moreover, the pairs of hyper-spheres in the Table 5.3 may be organized

in the following ways:
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Table 5.2: The 3-faces of the eight circumscribed 4-cuboids in the Proposition 57.

Inscribed spheres S3 3-faces of the 4-cuboids
S1 A1, A2, B1, B2, C1, C2, D1, D2

S2 A1, A2, B2, B3, C1, C2, D1, D2

S3 A1, A2, B1, B2, C2, C3, D1, D2

S4 A1, A2, B1, B2, C2, C3, D2, D3

S5 A1, A2, B1, B2, C1, C2, D2, D3

S6 A1, A2, B2, B3, C1, C2, D2, D3

S7 A1, A2, B2, B3, C2, C3, D1, D2

S8 A1, A2, B2, B3, C2, C3, D2, D3

Table 5.3: External centers of all pairs of spheres in the Proposition 57.

Pairs of spheres External centers Pairs of spheres External centers
S1, S2 E1 S3, S5 E15
S1, S3 E2 S3, S6 E16
S1, S4 E3 S3, S7 E17
S1, S5 E4 S3, S8 E18
S1, S6 E5 S4, S5 E19
S1, S7 E6 S4, S6 E20
S1, S8 E7 S4, S7 E21
S2, S3 E8 S4, S8 E22
S2, S4 E9 S5, S6 E23
S2, S5 E10 S5, S7 E24
S2, S6 E11 S5, S8 E25
S2, S7 E12 S6, S7 E26
S2, S8 E13 S6, S8 E27
S3, S4 E14 S7, S8 E28

T1 = {S1, S2;S3, S7;S4, S8;S5, S6},

T2 = {S1, S3;S2, S7;S4, S5;S6, S8},

T3 = {S1, S5;S2, S6;S3, S4;S7, S8}.

We claim that the external centers of the four pairs in each set Ti, with i ∈ {1, 2, 3}, coincide

and the external centers of similitude obtained from two different sets Ti and Tj are different.

Notice that the hyperplanes D1 and D2 are common external tangent of the pairs of hyper-

spheres S1 and S2, and S3 and S7. Then, their external centers of similitude lie in a 2-
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dimensional plane which is the intersection of the hyperplanes D1 and D2. Therefore, the

external centers of similitude E1 and E17 belong to the intersection of four hyperplanes. This

implies that these two external centers of similitude coincide. The proofs for the remaining

pairs are exactly similar. Combining all together, we obtain

E0 := E1 ≡ E17 ≡ E22 ≡ E23,

E1 := E2 ≡ E12 ≡ E19 ≡ E27,

E2 := E4 ≡ E11 ≡ E14 ≡ E28.

(5.6)

We need to verify that the external centers of similitude E0, E1 and E2 do not coincide and

are not collinear. Suppose that E0 and E1 coincide. Then, B2 becomes an external tangent

hyperplane of S1 and S2. By assumption however, the hyperplane B2 is the internal tangent

of the hyper-spheres S1 and S2. This is a contradiction. To see the non-collinearity of E0, E1

and E2, let us choose the hyper-spheres S1, S2, S3 and S5. According to the Table 5.3, the

external centers of similitude of the pairs of spheres S1 and S2, S1 and S3, S1 and S5, S2

and S3, S2 and S5, and S3 and S5 are E0, E1, E8, E
2, E10 and E15 respectively. One proves

that these external centers of similitude are vertices of a complete quadrilateral. Due to the

Monge’s theorem, the points E0, E1 and E8 are collinear, and the points E2, E10 and E15 are

collinear as well. This implies that the external centers of similitude E0, E1 and E2 lie in two

different lines, meaning that they are not collinear. �

Proposition 58. Consider a 4-cuboid in a 4-dimensional space formed by the pairs of

hyperplanes A2, A3, B1, B3, C1, C3, D1 and D3. Suppose that this 4-cuboid is divided by the

hyperplanes B2, C2 and D2 into eight circumscribed 4-cuboids. Then, among the 28 external

centers of similitude, there exist three quadruplets of external centers of similitude such that

all external centers of similitude in each quadruplet coincide.

The Table 5.4 and Table 5.5 show the 3-faces of the circumscribed 4-cuboids and the

external centers of all pairs of spheres in the Proposition 58, respectively.
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Table 5.4: The 3-faces of the eight circumscribed 4-cuboids in the Proposition 58.

Inscribed spheres S3 3-faces of the 4-cuboids
S ′1 A2, A3, B1, B2, C1, C2, D1, D2

S ′2 A2, A3, B2, B3, C1, C2, D1, D2

S ′3 A2, A3, B1, B2, C2, C3, D1, D2

S ′4 A2, A3, B1, B2, C2, C3, D2, D3

S ′5 A2, A3, B1, B2, C1, C2, D2, D3

S ′6 A2, A3, B2, B3, C1, C2, D2, D3

S ′7 A2, A3, B2, B3, C2, C3, D1, D2

S ′8 A2, A3, B2, B3, C2, C3, D2, D3

Table 5.5: External centers of all pairs of spheres S3 in the Proposition 58.

Pairs of spheres External centers Pairs of spheres External centers
S ′1, S

′
2 E ′1 S ′3, S

′
5 E ′15

S ′1, S
′
3 E ′2 S ′3, S

′
6 E ′16

S ′1, S
′
4 E ′3 S ′3, S

′
7 E ′17

S ′1, S
′
5 E ′4 S ′3, S

′
8 E ′18

S ′1, S
′
6 E ′5 S ′4, S

′
5 E ′19

S ′1, S
′
7 E ′6 S ′4, S

′
6 E ′20

S ′1, S
′
8 E ′7 S ′4, S

′
7 E ′21

S ′2, S
′
3 E ′8 S ′4, S

′
8 E ′22

S ′2, S
′
4 E ′9 S ′5, S

′
6 E ′23

S ′2, S
′
5 E ′10 S ′5, S

′
7 E ′24

S ′2, S
′
6 E ′11 S ′5, S

′
8 E ′25

S ′2, S
′
7 E ′12 S ′6, S

′
7 E ′26

S ′2, S
′
8 E ′13 S ′6, S

′
8 E ′27

S ′3, S
′
4 E ′14 S ′7, S

′
8 E ′28

Proof. The proof of the Proposition 58 is similar to the proof of Proposition 57. We thus

obtain:

E0∗ := E
′
1 ≡ E ′17 ≡ E ′22 ≡ E ′23,

E1∗ := E
′
2 ≡ E ′12 ≡ E ′19 ≡ E ′27,

E2∗ := E
′
4 ≡ E ′11 ≡ E ′14 ≡ E ′28.

(5.7)

�
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Proposition 59. Consider a 4-cuboid in a 4-dimensional space whose 3-faces are A1, A3,

B1, B3, C1, C3, D1 and D3. Suppose that this 4-cuboid is split by four hyperplanes A2, B2,

C2 and D2 into sixteen circumscribed 4-cuboids. Then, the four triplets of hyperplanes A1,

A2 and A3, B1, B2 and B3, C1, C2 and C3, and D1, D2 and D3 are nice.

Proof. Let us consider the two 4-cuboids mentioned in the Propositions 57 and 58. The last

thing that we need to prove here is that the pairs of external centers of similitude Ei and

Ei∗, for i = 0, 1, 2, coincide. We need only to prove the coincidence of the external centers of

similitude E0 and E0∗ and the proofs of the rest are similar. Choose the pairs of spheres S1

and S2, and S ′1 and S ′2. We have proved in the Propositions 57 and 58 that the points E0 and

E0∗ are the external centers of similitude of those pairs spheres respectively. Moreover, these

external centers of similitude are the points of intersection of four hyperplanes C1, C2, D1

and D2. Therefore, E0 and E0∗ must coincide. It follows that the hyperplanes A1, A2 and A3

intersect in a plane spanned by the lines (E0E1) and (E0E2). In other words, the hyperplanes

A1, A2 and A3 are nice. The application of the Propositions 57 and 58 to the circumscribed

4-cuboids shown in the first column of the Table 5.6, combined with the previous argument,

leads us to the conclusion of the second column of the Table 5.6. Therefore, the hyperplanes

B1, B2 and B3, C1, C2 and C3, and D1, D2 and D3 are also nice.

Table 5.6: Pairs of circumscribed 4-cuboids have three common external centers of similitude.

3-faces of the 4-cuboids Common external centers of similitude
of pairs of circumscribed 4-cuboids

A1, A2;B1, B3;C1, C3;D1, D3 E0, E1, E2

A2, A3;B1, B3;C1, C3;D1, D3

A1, A3;B1, B2;C1, C3;D1, D3 E1, E2, F0

A1, A3;B2, B3;C1, C3;D1, D3

A1, A3;B1, B3;C1, C2;D1, D3 E0, E2, F0

A1, A3;B1, B3;C2, C3;D1, D3

A1, A3;B1, B3;C1, C3;D1, D2 E0, E1, F0

A1, A3;B1, B3;C1, C3;D2, D3

�
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Proof. (Theorem 56). The Proposition 59 has proved the first condition of the theorem.

It remains to show that the four 2-dimensional planes lie in a 3-dimensional space. It is

sufficient to prove that any pair of plane intersects along a line. We observe from the Table

5.6 that the four triplets of hyperplanes A1, A2 and A3, B1, B2 and B3, C1, C2 and C3, and

D1, D2 and D3 intersect at the planes spanned by the lines (E0E1) and (E0E2), (E1E2) and

(E1F0), (E0F0) and (E0E2), and (E0E1) and (E0F0), respectively, where F0 is one the external

centers of similitude of the inscribed hyper-spheres in the 4-cuboid formed by the hyperplane

A1, A3, B1, B2, C1, C3, D1 and D3. These lines form a tetrahedron with vertices E0, E1, E2

and F0. This proves the last condition of the Theorem 56. �

5.6 Checkerboard inscribed spherical nets in R3

This last section contains an overview of a checkerboard inscribed sphere in R3, which is a

generalization of a circumscribed cuboids in spatial case. Here, we simply recall the definition

of the checkerboard inscribed spherical nets and their main geometric and combinatorial

properties. We will omit the proofs of some theorems since they require additional concepts.

Also, we follow the exposition presented in [1]. Let us start with some notation that we will

use in the sequel. Consider images of the integer lattice f : Z3 −→ R3. A cube is represented

by �
c
i,j,k and its vertices are fi,j,k, fi+c,j,k, fi,j+c,k, fi,j,k+c, fi+c,j+c,k, fi,j+c,k+c, fi+c,j,k+c and

fi+c,j+c,k+c. If the indices i, j and k are either all even or all odd, and c is odd, then we call

this cube a net-cube. It is an unit net-cube if c = 1 and denoted by �i,j,k.

Definition 32 ([1], Definition 4.1). A map f : Z3 −→ R3 is called a checkerboard inscribed

spherical net (or a checkerboard IS net) if the following conditions hold:

1. For any integers i and j, the points of the form {fi,j,k|k ∈ Z} lie on a straight line

and three consecutive points fi,j,k−1, fi,j,k and fi,j,k+1 on such line satisfy the condition

that the point fi,j,k lies between the points fi,j,k−1 and fi,j,k+1. The points of the form

{fi,j,k|i ∈ Z} and {fi,j,k|j ∈ Z} also satisfy these conditions.
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2. All unit net-cubes �i,j,k are circumscribed.

Notice that lines ni,j, mi,k and lj,k are lines of the checkerboard IS net and they contain

respectively the points {fi,j,k|∀k}, {fi,j,k|∀j} and {fi,j,k|∀i}. The planes of the checkerboard IS

net are

Li ⊃ {fi,j,k|∀j, k}, Nj ⊃ {fi,j,k|∀i, k} and Nk ⊃ {fi,j,k|∀i, j}.

Proposition 60 ([1], Lemma 4.3). Consider a cubical polytope � in R3 such that this

cubical polytope is divided by three sets of two planes into 27 combinatorial cubes. Suppose

that the central cube �1,1,1 is circumscribed and the cubes �0,0,0, �2,0,0,�0,2,0 and �0,0,2 are

projective cubes and are circumscribed. Then, the unit net-cubes �2,2,0, �2,0,2, �0,2,2 and

�2,2,2 are also circumscribed and they are projective cubes as well. In other words, cubical

polytope � is an IS net.

Figure 5.9: An IS-net �
3
0,0,0.

Proof. If an unit net-cube �i,j,k is circumscribed, then we denote by oi,j,k the center of its

inscribed sphere. The vertices of the central unit net-cube are f1,1,1, f2,1,1, f1,2,1, f2,2,1, f1,1,2,
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f2,1,2, f1,2,2 and f2,2,2, and the center of its inscribed sphere is o1,1,1. Let us define a projective

map σ as follows

σ(f1,1,1) = o0,0,0, σ(f2,1,1) = o2,0,0,

σ(f1,2,1) = o0,2,0, σ(f1,1,2) = o0,0,2.

Since the four straight lines (f1,1,1o0,0,0), (f2,1,1o2,0,0), (f1,2,1o0,2,0) and (f1,1,2o0,0,2) pass through

the point o1,1,1 and they are preserved by the projective map σ, all lines passing through the

point o1,1,1 are also preserved by the projective map σ. Notice that the unit net-cubes �2,0,0

and �0,2,0 are circumscribed projective cubes and their face planes coincide with the face

planes of the cell �2,2,0. We are going to show that the cell �2,2,0 is circumscribed and the

center of the inscribed sphere is σ(f2,2,1) = o2,2,0 (see Figure 5.9). The image of the plane L1

under σ is the plane L 1
2
. The plane L 1

2
passes through the points o0,0,0, o0,2,0 and o0,0,2, and

it is the bisector of the planes L0 and L1. The point σ(f1,2,2) = L 1
2
∩ (f1,2,2o1,1,1) = o2,2,0 is

equidistant from the planes L1,M2 and N2 as a point on (f1,2,2o1,1,1) and belongs to the plane

L 1
2
, then this point is exactly the center of inscribed sphere in �2,2,0. The remaining cells

�2,0,2 and �0,2,2 are also circumscribed by using the foregoing arguments and the respective

corresponding centers of the inscribed spheres are σ(f2,1,2) = o2,0,2 and σ(f1,2,2) = o0,2,2. The

cell �2,2,2 possesses an inscribed sphere and the center of the sphere is the point o2,2,2 =

L2 1
2
∩M2 1

2
∩N2 1

2
, where the planes L2 1

2
,M2 1

2
and N2 1

2
are bisectors of the pairs of planes L2

and L3, M2 and M3, and N2 and N3 respectively. The point o2,2,2 lies on the line (o1,1,1f2,2,2)

and is equidistant from all face planes of the cell �2,2,2. This completes the proof. �

Corollary 61 (9 inspheres incidence theorem). Let � be a cubical polytope in R3 such that

this cubical polytope is split by three sets of two planes into 27 combinatorial cubes. Assume

that the cells �0,0,0, �2,0,0, �0,2,0, �0,0,2, �2,2,0, �2,0,2, �0,2,2 and �1,1,1 are circumscribed.

Then, the last cell �2,2,2 is also circumscribed.

92



Theorem 62 ([1], Theorem 4.7). Let � be a cubical polytope in R3. Suppose that this

cubical polytope is divided by three sets of two planes into 27 combinatorial cubes and the

cubes �0,0,0, �2,0,0, �0,2,0, �0,0,2, �2,2,0, �2,0,2, �0,2,2, �1,1,1 and �2,2,2 are circumscribed.

Then the cubical polytope � is circumscribed as well.

Theorem 63 (Construction of a checkerboard IS net, [1], Theorem 4.5). A checkerboard IS

net is determined by its 8 cubic cells with vertices fi,j,k, i, j, k ∈ {0, 1, 2}, such that the cells

�0,0,0 and �1,1,1 are circumscribed projective cubes.

Proof. Notice that the 8 cubic cells are formed by the planes M0, M1, M2, N0, N1, N2, L0,

L1 and L2. The existence of a sphere touching the planes M0, M1, N0, N1 and L2 follows

from the fact that the cubic cell �0,0,0 is circumscribed projective cube. Then, the plane

L3 is uniquely determined according to the Lemma 53. In other words, the cubic cell �2,0,0

is circumscribed projective cube. Applying this argument several times, we can prove that

the cubic cell �0,0,2, �0,2,0, �2,2,0, �2,0,2, �0,2,2 and �2,2,2 are circumscribed projective cubes.

Further, in a checkerboard IS net pattern there is a sphere touching the planes M1, M2, N1,

N2 and L3. The use of the Lemma 53 determines the plane L4. By continuing this process

of construction, we can generate the whole checkerboard IS net. �

Theorem 64 ([1], Theorem 4.1). Let f be a checkerboard IS net. Then, the following

properties hold:

1. All net-cubes of f are circumscribed.

2. The net-cubes �
c
i,j,k and �

c+4s+2
i−2s−1,j−2s−1,k−2s−1 are perspective.

3. The line li,j, with i+ j = constant, lie on a one-sheeted hyperboloid. This result is still

valid for li,j, with i− j = constant. Both statements are still true for the lines ni,j and

mi,k.
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4. The centers oi,j,k of the spheres inscribed in the net-cubes �i,j,k, with all indices i, j, k

are either even or odd, build a grid projectively equivalent to an orthogonal grid.

Proof. 1. Let us prove the first statement by induction on c. For c = 1, all net-cubes are

unit net-cubes. Due to the second condition in the Definition 32, all unit net-cubes are

circumscribed. Suppose that the net-cube �
c
i+1,j+1,k+1 is circumscribed. We need to show

that all net-cubes �
c+2
i,j,k are also circumscribed. We observe that the net-cube �

c+2
i,j,k is made

up of the following net-cubes

�i,j,k, �i+c+1,j,k, �i,j+c+1,k, �i,j,k+c+1, �
c
i+1,j+1,k+1,

�i+c+1,j+c+1,k, �i+c+1,j,k+c+1, �i,j+c+1,k+c+1, �i+c+1,j+c+1,k+c+1.

All the net-cubes above are unit net-cubes except the net cube �
c
i+1,j+1,k+1, then they are

circumscribed. By induction hypothesis, the net-cube �
c
i+1,j+1,k+1 is also circumscribed.

Thus, due to Theorem 62 the net-cube �
c+2
i,j,k is also circumscribed. Hence, all net-cubes of

IS net are circumscribed.

2. The proof of the statement focuses only on the case where the value of s is positive.

The proof is similar for the other case. Notice that the six faces of the net-cube �
c
i,j,k

divide the net-cube �
c+2
i−2s−1,j−2s−1,k−2s−1 into twenty seven cells such that the eight cells at

the corners are net-cubes. Let denote these net-cubes by �l, l = 1, 2, · · · , 8. The vertices of

the net-cubes �
c
i,j,k and �

c+4s+2
i−2s−1,j−2s−1,k−2s−1 are denoted by al and bl respectively. Let us call

by ωl the inscribed spheres of the net-cubes �l, and by Ω and Ω ′ the respective inscribed

spheres of �
c
i,j,k and �

c+4s+2
i−2s−1,j−2s−1,k−2s−1. Then, the center of similitude of ωl and Ω ′ is the

point al, and bl is the center of similitude of ωl and Ω. It follows from the Theorem 22

that the line (albl) passes through the center of similitude of Ω and Ω ′. Thus, all lines

(albl) intersect at one point, this proves that the net-cubes �
c
i,j,k and �

c+4s+2
i−2s−1,j−2s−1,k−2s−1 are

perspective.
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3. Let li1,j1 and li2,j2 be two lines of the checkerboard IS net such that the integers i1

and i2 are of different parities and i1+ j1 = i2+ j2. Then, there exists a net-cube having the

edges li1,j1 and li2,j2 . As mentioned earlier, the net-cubes are projective cubes. Therefore

these lines must intersect. From the previous argument, we can separate the lines li,j into

different families of lines depending on the parity of the integer i. It follows that any two

lines from these families intersect. Thus, they lie on hyperboloid of one sheet.

4. It has been mentioned in the proof of the Theorem 62 that the point oi+1±1,j+1±1,k+1±1

are vertices of a cube, projectively equivalent to the unit net-cube �i+1,j+1,k+1. The lat-

ter unit net-cube is a projective cube. All elementary cells of the grid oi,j,k, i, j, k ∈ 2Z,

are also projective cubes. The coincidence of the infinite points of all elementary cells is

straightforward to verify. This completes the proof the statement. �
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