Zheng, ZhenGong, MingZhang, YichaoZou, XuboZhang, ChuanweiGuo, Guangcan2014-11-252014-11-252014-10-072014-10-072045-2322http://hdl.handle.net/10735.1/4223We show that the combination of spin-orbit coupling and in-plane Zeeman field in a two-dimensional degenerate Fermi gas can lead to a larger parameter region for Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases than that using spin-imbalanced Fermi gases. The resulting FFLO superfluids are also more stable due to the enhanced energy difference between FFLO and conventional Bardeen-Cooper-Schrieffer (BCS) excited states. We clarify the crucial role of the symmetry of Fermi surface on the formation of finite momentum pairing. The phase diagram for FFLO superfluids is obtained in the BCS-BEC crossover region and possible experimental observations of FFLO phases are discussed.CC BY 4.0 (Attribution)The Authorshttp://creativecommons.org/licenses/by/4.0/SuperconductorsFulde-Ferrell-Larkin-Ovchinnikov superfluidsBardeen-Cooper-Schrieffer excited statesCooper pairFermi gasFFLO Superfluids in 2d Spin-Orbit Coupled Fermi GasesArticleZheng, Zhen, Ming Gong, Yichao Zhang, Xubo Zou, et al. 2014. "FFLO Superfluids in 2D spin-orbit coupled Fermi gases." Scientific Reports 4(06535): 1-7.46535