Gerosa, D.O'Shaughnessy, R.Kesden, MichaelBerti, E.Sperhake, U.2014-10-282014-10-282014-06-242014-06-241550-2368http://hdl.handle.net/10735.1/4148If binary black holes form following the successive core collapses of sufficiently massive binary stars, precessional dynamics may align their spins, S₁ and S₂, and the orbital angular momentum L into a plane in which they jointly precess about the total angular momentum J. These spin orientations are known as spin-orbit resonances since S₁, S₂, and L all precess at the same frequency to maintain their planar configuration. Two families of such spin-orbit resonances exist, differentiated by whether the components of the two spins in the orbital plane are either aligned or antialigned. The fraction of binary black holes in each family is determined by the stellar evolution of their progenitors, so if gravitational-wave detectors could measure this fraction they could provide important insights into astrophysical formation scenarios for binary black holes. In this paper, we show that even under the conservative assumption that binary black holes are observed along the direction of J (where precession-induced modulations to the gravitational waveforms are minimized), the waveforms of many members of each resonant family can be distinguished from all members of the other family in events with signal-to-noise ratios ρ ≃10, typical of those expected for the first detections with Advanced LIGO and Virgo. We hope that our preliminary findings inspire a greater appreciation of the capability of gravitational-wave detectors to constrain stellar astrophysics and stimulate further studies of the distinguishability of spin-orbit resonant families in more expanded regions of binary black-hole parameter space.en©2014 American Physical SocietyAngular momentumSpin orbit resonancesDouble starsBlack holes (Astronomy)Distinguishing Black-Hole Spin-Orbit Resonances by their Gravitational-Wave SignaturesArticleGerosa, D., R. O'Shaughnessy, M. Kesden, E. Berti, et al. 2014. "Distinguishing black-hole spin-orbit resonances by their gravitational-wave signatures." Physical Review D - Particles, Fields, Gravitation and Cosmology 89(12): 124025-1 to 16.8912