Campbell, Zachary T.

Permanent URI for this collectionhttps://hdl.handle.net/10735.1/6180

Zachary Campbell joined the UTD faculty in 2015 as an Assistant Professor of Biological Sciences. In 2018 he was awarded one of five Outstanding Teacher Awards by the School of Natural Sciences and Mathematics. Dr. Campbell is the head of the RNA Control Lab and a member of the Center for Advanced Pain Studies and the Texas Pain Research Consortium. His research interests focus on RNA and how "regulatory information encoded by untranslated regions present in mRNA relates to pain amplifying behavior" with the goal of designing "mechanism-based inhibitors of RNA-protein interactions."

ORCID page.

Browse

Recent Submissions

Now showing 1 - 6 of 6
  • Item
    Nociceptor Translational Profiling Reveals the Ragulator-Rag GTPase Complex as a Critical Generator of Neuropathic Pain
    (Soc Neuroscience, 2019-01-16) Megat, Salim; Ray, Pradipta R.; Moy, Jamie K.; Lou, Tzu-Fang; Barragan-Iglesias, Paulino; Li, Yan; Pradhan, Grishma; Wanghzou, Andi; Ahmad, Ayesha; Burton, Michael D.; North, Robert Y.; Dougherty, Patrick M.; Khoutorsky, Arkady; Sonenberg, Nahum; Webster, Nevin R.; Dussor, Gregory; Campbell, Zachary T.; Price, Theodore J.; 0000-0003-4281-3985 (Pradhan, G); 0000-0002-0628-824X (Burton, MD); 0000-0002-3768-6996 (Campbell, ZT); 0000-0002-6971-6221 (Price, TJ); Megat, Salim; Ray, Pradipta R.; Moy, Jamie K.; Lou, Tzu-Fang; Barragan-Iglesias, Paulino; Pradhan, Grishma; Wanghzou, Andi; Ahmad, Ayesha; Burton, Michael D.; Dussor, Gregory; Campbell, Zachary T.; Price, Theodore J.
    Nociceptors, sensory neurons in the DRG that detect damaging or potentially damaging stimuli, are key drivers of neuropathic pain. Injury to these neurons causes activation of translation regulation signaling, including the mechanistic target of rapamycin complex 1 (mTORC1) and mitogen-activated protein kinase interacting kinase(MNK) eukaryotic initiation factor (eIF) 4E pathways. This is a mechanism driving changes in excitability of nociceptors that is critical for the generation of chronic pain states; however, the mRNAs that are translated to lead to this plasticity have not been elucidated. To address this gap in knowledge, we used translating ribosome affinity purification in male and female mice to comprehensively characterize mRNA translation in Scn10a-positive nociceptors in chemotherapy-induced neuropathic pain (CIPN) caused by paclitaxel treatment. This unbiased method creates a new resource for the field, confirms many findings in the CIPN literature and also find extensive evidence for new target mechanisms that may cause CIPN. We provide evidence that an underlying mechanism of CIPN is sustained mTORC1 activation driven by MNK1-eIF4E signaling. RagA, aGTPase controlling mTORC1 activity, is identified as a novel target of MNK1-eIF4E signaling. This demonstrates a novel translation regulation signaling circuit wherein MNK1-eIF4E activity drives mTORC1 via control of RagA translation. CIPN and RagA translation are strongly attenuated by genetic ablation of eIF4E phosphorylation, MNK1 elimination or treatment with the MNK inhibitor eFT508. We identify a novel translational circuit for the genesis of neuropathic pain caused by chemotherapy with important implications for therapeutics.
  • Item
    Emerging Neurotechnology for Antinoceptive Mechanisms and Therapeutics Discovery
    (Elsevier Advanced Technology, 2018-11-13) Black, Bryan J.; Atmaramani, Rahul; Plagens, Sarah; Campbell, Zachary T.; Dussor, Gregory; Price, Theodore J.; Pancrazio, Joseph J.; 0000-0002-3768-6996 (Campbell, ZT); 0000-0002-6971-6221 (Price, TJ); 0000-0001-8276-3690 (Pancrazio, JJ); Black, Bryan J.; Atmaramani, Rahul; Plagens, Sarah; Campbell, Zachary T.; Dussor, Gregory; Price, Theodore J.; Pancrazio, Joseph J.
    The tolerance, abuse, and potential exacerbation associated with classical chronic pain medications such as opioids creates a need for alternative therapeutics. Phenotypic screening provides a complementary approach to traditional target-based drug discovery. Profiling cellular phenotypes enables quantification of physiologically relevant traits central to a disease pathology without prior identification of a specific drug target. For complex disorders such as chronic pain, which likely involves many molecular targets, this approach may identify novel treatments. Sensory neurons, termed nociceptors, are derived from dorsal root ganglia (DRG) and can undergo changes in membrane excitability during chronic pain. In this review, we describe phenotypic screening paradigms that make use of nociceptor electrophysiology. The purpose of this paper is to review the bioelectrical behavior of DRG neurons, signaling complexity in sensory neurons, various sensory neuron models, assays for bioelectrical behavior, and emerging efforts to leverage microfabrication and microfluidics for assay development. We discuss limitations and advantages of these various approaches and offer perspectives on opportunities for future development.
  • Item
    Engineering a Conserved RNA Regulatory Protein Repurposes its Biological Function in Vivo
    (eLife Sciences Publications Ltd, 2019-01-17) Bhat, Vandita D.; McCann, Kathleen L.; Wang, Yeming; Fonseca, Dallas R.; Shukla, Tarjani; Alexander, Jacqueline C.; Qiu, Chen; Wickens, Marv; Lo, Te-Wen; Hall, Traci M. Tanaka; Campbell, Zachary T.; 0000-0002-3768-6996 (Campbell, ZT); Bhat, Vandita D.; Shukla, Tarjani; Campbell, Zachary T.
    PUF (PUmilio/FBF) RNA-binding proteins recognize distinct elements. In C. elegans, PUF-8 binds to an 8-nt motif and restricts proliferation in the germline. Conversely, FBF-2 recognizes a 9-nt element and promotes mitosis. To understand how motif divergence relates to biological function, we first determined a crystal structure of PUF-8. Comparison of this structure to that of FBF-2 revealed a major difference in a central repeat. We devised a modified yeast 3-hybrid screen to identify mutations that confer recognition of an 8-nt element to FBF-2. We identified several such mutants and validated structurally and biochemically their binding to 8-nt RNA elements. Using genome engineering, we generated a mutant animal with a substitution in FBF-2 that confers preferential binding to the PUF-8 element. The mutant largely rescued overproliferation in animals that spontaneously generate tumors in the absence of puf-8. This work highlights the critical role of motif length in the specification of biological function.
  • Item
    Activation of the Integrated Stress Response in Nociceptors Drives Methylglyoxal-Induced Pain
    (Lippincott Williams & Wilkins, 2019-01) Barragan-Iglesias, Paulino; Kuhn, Jasper; Vidal-Cantu, Guadalupe C.; Belen Salinas-Abarca, Ana; Granados-Soto, Vinicio; Dussor, Gregory; Campbell, Zachary T.; Price, Theodore J.; 0000-0002-3768-6996 (Campbell, ZT); 0000-0002-6971-6221 (Price, TJ); Dussor, Gregory; Campbell, Zachary T.; Price, Theodore J.
    Methylglyoxal (MGO) is a reactive glycolytic metabolite associated with painful diabetic neuropathy at plasma concentrations between 500 nM and 5 μM. The mechanisms through which MGO causes neuropathic pain at these pathological concentrations are not known. Because MGO has been linked to diabetic neuropathic pain, which is prevalent and poorly treated, insight into this unsolved biomedical problem could lead to much needed therapeutics. Our experiments provide compelling evidence that ~ 1-μM concentrations of MGO activate the integrated stress response (ISR) in IB4-positive nociceptors in the dorsal root ganglion (DRG) of mice in vivo and in vitro. Blocking the integrated stress response with a specific inhibitor (ISRIB) strongly attenuates and reverses MGO-evoked pain. Moreover, ISRIB reduces neuropathic pain induced by diabetes in both mice and rats. Our work elucidates the mechanism of action of MGO in the production of pain at pathophysiologically relevant concentrations and suggests a new pharmacological avenue for the treatment of diabetic and other types of MGO-driven neuropathic pain.
  • Item
    Global Pairwise RNA Interaction Landscapes Reveal Core Features of Protein Recognition
    (Nature Publishing Group) Zhou, Qin; Kunder, Nikesh; De La Paz, Jose Alberto; Lasley, Alexandra E.; Bhat, Vandita D.; Morcos, Faruck; Campbell, Zachary T.; 0000-0002-3768-6996 (Campbell, ZT); Zhou, Qin; Kunder, Nikesh; De La Paz, Jose Alberto; Lasley, Alexandra E.; Bhat, Vandita D.; Morcos, Faruck; Campbell, Zachary T.
    RNA-protein interactions permeate biology. Transcription, translation, and splicing all hinge on the recognition of structured RNA elements by RNA-binding proteins. Models of RNA-protein interactions are generally limited to short linear motifs and structures because of the vast sequence sampling required to access longer elements. Here, we develop an integrated approach that calculates global pairwise interaction scores from in vitro selection and high-throughput sequencing. We examine four RNA-binding proteins of phage, viral, and human origin. Our approach reveals regulatory motifs, discriminates between regulated and non-regulated RNAs within their native genomic context, and correctly predicts the consequence of mutational events on binding activity. We design binding elements that improve binding activity in cells and infer mutational pathways that reveal permissive versus disruptive evolutionary trajectories between regulated motifs. These coupling landscapes are broadly applicable for the discovery and characterization of protein-RNA recognition at single nucleotide resolution.
  • Item
    Inhibition of Poly(A)-Binding Protein with a Synthetic RNA Mimic Reduces Pain Sensitization in Mice
    (Nature Publishing Group, 2018-10-22) Barragan-Iglesias, Paulino; Lou, Tzu-Fang; Bhat, Vandita D.; Megat, Salim; Burton, Michael D.; Price, Theodore J.; Campbell, Zachary T.; 0000-0002-6971-6221 (Price, TJ); 0000-0002-3768-6996 (Campbell, ZT); Barragan-Iglesias, Paulino; Lou, Tzu-Fang; Bhat, Vandita D.; Megat, Salim; Burton, Michael D.; Price, Theodore J.; Campbell, Zachary T.
    Nociceptors rely on cap-dependent translation to rapidly induce protein synthesis in response to pro-inflammatory signals. Comparatively little is known regarding the role of the regulatory factors bound to the 3' end of mRNA in nociceptor sensitization. Poly(A)-binding protein (PABP) stimulates translation initiation by bridging the Poly(A) tail to the eukaryotic initiation factor 4F complex associated with the mRNA cap. Here, we use unbiased assessment of PABP binding specificity to generate a chemically modified RNA-based competitive inhibitor of PABP. The resulting RNA mimic, which we designated as the Poly(A) SPOT-ON, is more stable than unmodified RNA and binds PABP with high affinity and selectivity in vitro. We show that injection of the Poly(A) SPOT-ON at the site of an injury can attenuate behavioral response to pain. Collectively, these results suggest that PABP is integral for nociceptive plasticity. The general strategy described here provides a broad new source of mechanism-based inhibitors for RNA-binding proteins and is applicable for in vivo studies.

Works in Treasures @ UT Dallas are made available exclusively for educational purposes such as research or instruction. Literary rights, including copyright for published works held by the creator(s) or their heirs, or other third parties may apply. All rights are reserved unless otherwise indicated by the copyright owner(s).