Zhang, Li

Permanent URI for this collection

Li Zhang holds the Cecil H. and Ida Green Distinguished Chair in Systems Biology Science. The main objective of her research is investigating the molecular mechanism of oxygen sensing and heme signaling.

Learn more about Dr. Zhang on her Expert at a Glance, Endowed Professorships and Chairs, and Research Explorer pages.

ORCID page


Recent Submissions

Now showing 1 - 9 of 9
  • Item
    Experimental Methods for Studying Cellular Heme Signaling
    (MDPI) Comer, Jonathan M.; Zhang, Li; 0000-0001-9242-0763 (Zhang, L); Comer, Jonathan M.; Zhang, Li
    The study of heme is important to our understanding of cellular bioenergetics, especially in cancer cells. The function of heme as a prosthetic group in proteins such as cytochromes is now well- documented. Less is known, however, about its role as a regulator of metabolic and energetic pathways. This is due in part to some inherent difficulties in studying heme. Due to its slightly amphiphilic nature, heme is a "sticky" molecule which can easily bind non-specifically to proteins. In addition, heme tends to dimerize, oxidize, and aggregate in purely aqueous solutions; therefore, there are constraints on buffer composition and concentrations. Despite these difficulties, our knowledge of heme's regulatory role continues to grow. This review sums up the latest methods used to study reversible heme binding. Heme-regulated proteins will also be reviewed, as well as a system for imaging the cellular localization of heme.
  • Item
    A Holistic View of Cancer Bioenergetics: Mitochondrial Function and Respiration Play Fundamental Roles in the Development and Progression of Diverse Tumors
    (Springer) Alam, Md Maksudul; Lal, Sneha; FitzGerald, Keely E.; Zhang, Li; Alam, Md Maksudul; Lal, Sneha; FitzGerald, Keely E.; Zhang, Li
    Since Otto Warburg made the first observation that tumor cells exhibit altered metabolism and bioenergetics in the 1920s, many scientists have tried to further the understanding of tumor bioenergetics. Particularly, in the past decade, the application of the state-of the-art metabolomics and genomics technologies has revealed the remarkable plasticity of tumor metabolism and bioenergetics. Firstly, a wide array of tumor cells have been shown to be able to use not only glucose, but also glutamine for generating cellular energy, reducing power, and metabolic building blocks for biosynthesis. Secondly, many types of cancer cells generate most of their cellular energy via mitochondrial respiration and oxidative phosphorylation. Glutamine is the preferred substrate for oxidative phosphorylation in tumor cells. Thirdly, tumor cells exhibit remarkable versatility in using bioenergetics substrates. Notably, tumor cells can use metabolic substrates donated by stromal cells for cellular energy generation via oxidative phosphorylation. Further, it has been shown that mitochondrial transfer is a critical mechanism for tumor cells with defective mitochondria to restore oxidative phosphorylation. The restoration is necessary for tumor cells to gain tumorigenic and metastatic potential. It is also worth noting that heme is essential for the biogenesis and proper functioning of mitochondrial respiratory chain complexes. Hence, it is not surprising that recent experimental data showed that heme flux and function are elevated in non-small cell lung cancer (NSCLC) cells and that elevated heme function promotes intensified oxygen consumption, thereby fueling tumor cell proliferation and function. Finally, emerging evidence increasingly suggests that clonal evolution and tumor genetic heterogeneity contribute to bioenergetic versatility of tumor cells, as well as tumor recurrence and drug resistance. Although mutations are found only in several metabolic enzymes in tumors, diverse mutations in signaling pathways and networks can cause changes in the expression and activity of metabolic enzymes, which likely enable tumor cells to gain their bioenergetic versatility. A better understanding of tumor bioenergetics should provide a more holistic approach to investigate cancer biology and therapeutics. This review therefore attempts to comprehensively consider and summarize the experimental data supporting our latest view of cancer bioenergetics.
  • Item
    Heme Promotes Transcriptional and Demethylase Activities of Gis1, a Member of the Histone Demethylase JMJD2/KDM4 Family
    (Oxford University Press, 2018-10-22) Lal, Sneha; Comer, Jonathan M.; Konduri, Purna C.; Shah, Ajit; Wang, Tianyuan; Lewis, Anthony; Shoffner, Grant; Guo, Feng; Zhang, Li; Lal, Sneha; Comer, Jonathan M.; Konduri, Purna C.; Wang, Tianyuan; Lewis, Anthony; Zhang, Li
    The yeast Gis1 protein is a transcriptional regulator belonging to the JMJD2/KDM4 subfamily of demethylases that contain a JmjC domain, which are highly conserved from yeast to humans. They have important functions in histone methylation, cellular signaling and tumorigenesis. Besides serving as a cofactor in many proteins, heme is known to directly regulate the activities of proteins ranging from transcriptional regulators to potassium channels. Here, we report a novel mechanism governing heme regulation of Gis1 transcriptional and histone demethylase activities. We found that two Gis1 modules, the JmjN + JmjC domain and the zinc finger (ZnF), can bind to heme specifically in vitro. In vivo functional analysis showed that the ZnF, not the JmjN + JmjC domain, promotes heme activation of transcriptional activity. Likewise, measurements of the demethylase activity of purified Gis1 proteins showed that full-length Gis1 and the JmjN + JmjC domain both possess demethylase activity. However, heme potentiates the demethylase activity of full-length Gis1, but not that of the JmjN + JmjC domain, which can confer heme activation of transcriptional activity in an unrelated protein. These results demonstrate that Gis1 represents a novel class of multi-functional heme sensing and signaling proteins, and that heme binding to the ZnF stimulates Gis1 demethylase and transcriptional activities.
  • Item
    The Vascular Disrupting Agent Combretastatin A-4 Phosphate Causes Prolonged Elevation of Proteins Involved in Heme Flux and Function in Resistant Tumor Cells
    (Impact Journals LLC, 2018-10-22) Dey, Sanchareeka; Kumari, Sharda; Kalainayakan, Sarada Preeta; Campbell, James,,III; Ghosh, Poorva; Zhou, Heling; FitzGerald, Keely E.; Li, Maoping; Mason, Ralph P.; Zhang, Li; Liu, Li; Dey, Sanchareeka; Kalainayakan, Sarada Preeta; Ghosh, Poorva; FitzGerald, Keely E.; Zhang, Li
    Vascular disrupting agents (VDAs) represent a promising class of anti-cancer drugs for solid tumor treatment. Here, we aim to better understand the mechanisms underlying tumor reccurrence and treatment resistance following the administration of a VDA, combretastatin A-4 phosphate (CA4P). Firstly, we used photoacoustic tomography to noninvasively map the effect of CA4P on blood oxygen levels throughout subcutaneous non-small cell lung cancer (NSCLC) tumors in mice. We found that the oxygenation of peripheral tumor vessels was significantly decreased at 1 and 3 hours post-CA4P treatment. The oxygenation of the tumor core reduced significantly at 1 and 3 hours, and reached anoxia after 24 hours. Secondly, we examined the effect of CA4P on the levels of proteins involved in heme flux and function, which are elevated in lung tumors. Using immunohistochemistry, we found that CA4P substantially enhanced the levels of enzymes involved in heme biosynthesis, uptake, and degradation, as well as oxygen-utilizing hemoproteins. Furthermore, measurements of markers of mitochondrial function suggest that CA4P did not diminish mitochondrial function in resistant tumor cells. These results suggest that elevated levels of heme flux and function contribute to tumor regrowth and treatment resistance post-VDA administration.
  • Item
    The Swi3 Protein Plays A Unique Role In Regulating Respiration In Eukaryotes
    (2016-06-30) Lal, Sneha; Alam, Md Maksudul; Hooda, Jagmohan; Shah, Ajit; Cao, Thai M.; Xuan, Zhenyu; Zhang, Li; Lal, Sneha; Alam, Md Maksudul; Hooda, Jagmohan; Shah, Ajit; Cao, Thai M.; Xuan, Zhenyu; Zhang, Li
    Recent experimental evidence increasingly shows that the dysregulation of cellular bioenergetics is associated with a wide array of common human diseases, including cancer, neurological diseases and diabetes. Respiration provides a vital source of cellular energy for most eukaryotic cells, particularly high energy demanding cells. However, the understanding of how respiration is globally regulated is very limited. Interestingly, recent evidence suggests that Swi3 is an important regulator of respiration genes in yeast. In this report, we performed an array of biochemical and genetic experiments and computational analysis to directly evaluate the function of Swi3 and its human homologues in regulating respiration. First, we showed, by computational analysis and measurements of oxygen consumption and promoter activities, that Swi3, not Swi2, regulates genes encoding functions involved in respiration and oxygen consumption. Biochemical analysis showed that the levels of mitochondrial respiratory chain complexes were substantially increased in Delta swi3 cells, compared with the parent cells. Additionally, our data showed that Swi3 strongly affects haem/oxygen-dependent activation of respiration gene promoters whereas Swi2 affects only the basal, haem-independent activities of these promoters. We found that increased expression of aerobic expression genes is correlated with increased oxygen consumption and growth rates in Delta swi3 cells in air. Furthermore, using computational analysis and RNAi knockdown, we showed that the mammalian Swi3 BAF155 and BAF170 regulate respiration in HeLa cells. Together, these experimental and computational data demonstrated that Swi3 and its mammalian homologues are key regulators in regulating respiration.
  • Item
    Broadband Transient Absorption Study of Photoexcitations in Lead Halide Perovskites: Towards a Multiband Picture
    (2016-02-24) Alam, Md Maksudul; Sohoni, Sagar; Kalainayakan, Sarada Preeta; Garrossian, Massoud; Zhang, Li; 0000-0001-9242-0763 (Zhang, L); Alam, Md Maksudul; Sohoni, Sagar; Kalainayakan, Sarada Preeta; Zhang, Li
    BACKGROUND: Aberrant Hedgehog (Hh) signaling is associated with the development of many cancers including prostate cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, ovarian cancer, and basal cell carcinoma. The Hh signaling pathway has been one of the most intensely investigated targets for cancer therapy, and a number of compounds inhibiting Hh signaling are being tested clinically for treating many cancers. Lung cancer causes more deaths than the next three most common cancers (colon, breast, and prostate) combined. Cyclopamine was the first compound found to inhibit Hh signaling and has been invaluable for understanding the function of Hh signaling in development and cancer. To find novel strategies for combating lung cancer, we decided to characterize the effect of cyclopamine tartrate (CycT), an improved analogue of cyclopamine, on lung cancer cells and its mechanism of action. METHODS: The effect of CycT on oxygen consumption and proliferation of non-small-cell lung cancer (NSCLC) cell lines was quantified by using an Oxygraph system and live cell counting, respectively. Apoptosis was detected by using Annexin V and Propidium Iodide staining. CycT’s impact on ROS generation, mitochondrial membrane potential, and mitochondrial morphology in NSCLC cells was monitored by using fluorometry and fluorescent microscopy. Western blotting and fluorescent microscopy were used to detect the levels and localization of Hh signaling targets, mitochondrial fission protein Drp1, and heme-related proteins in various NSCLC cells. RESULTS: Our findings identified a novel function of CycT, as well as another Hh inhibitor SANT1, to disrupt mitochondrial function and aerobic respiration. Our results showed that CycT, like glutamine depletion, caused a substantial decrease in oxygen consumption in a number of NSCLC cell lines, suppressed NSCLC cell proliferation, and induced apoptosis. Further, we found that CycT increased ROS generation, mitochondrial membrane hyperpolarization, and mitochondrial fragmentation, thereby disrupting mitochondrial function in NSCLC cells. CONCLUSIONS: Together, our work demonstrates that CycT, and likely other Hh signaling inhibitors, can interrupt NSCLC cell function by promoting mitochondrial fission and fragmentation, mitochondrial membrane hyperpolarization, and ROS generation, thereby diminishing mitochondrial respiration, suppressing cell proliferation, and causing apoptosis. Our work provides novel mechanistic insights into the action of Hh inhibitors in cancer cells.
  • Item
    Heme, an Essential Nutrient from Dietary Proteins, Critically Impacts Diverse Physiological and Pathological Processes
    (MDPI AG, 2014-03-13) Hooda, Jagmohan; Shah, Ajit; Zhang, Li; Zhang, Li
    Heme constitutes 95% of functional iron in the human body, as well as two-thirds of the average person's iron intake in developed countries. Hence, a wide range of epidemiological studies have focused on examining the association of dietary heme intake, mainly from red meat, with the risks of common diseases. High heme intake is associated with increased risk of several cancers, including colorectal cancer, pancreatic cancer and lung cancer. Likewise, the evidence for increased risks of type-2 diabetes and coronary heart disease associated with high heme intake is compelling. Furthermore, recent comparative metabolic and molecular studies of lung cancer cells showed that cancer cells require increased intracellular heme biosynthesis and uptake to meet the increased demand for oxygen-utilizing hemoproteins. Increased levels of hemoproteins in turn lead to intensified oxygen consumption and cellular energy generation, thereby fueling cancer cell progression. Together, both epidemiological and molecular studies support the idea that heme positively impacts cancer progression. However, it is also worth noting that heme deficiency can cause serious diseases in humans, such as anemia, porphyrias, and Alzheimer's disease. This review attempts to summarize the latest literature in understanding the role of dietary heme intake and heme function in diverse diseases.
  • Item
    Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells
    (2013-05-21) Hooda, Jagmohan; Cadinu, Daniela; Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li; Zhang, Li
    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer biology and therapeutics.
  • Item
    The Nuclear Localization of SWI/SNF Proteins Is Subjected to Oxygen Regulation
    (2012-08-29) Dastidar, Ranita Ghosh; Hooda, Jagmohan; Shah, Ajit; Cao, Thai M.; Robert Michael Henke; Zhang, Li; Zhang, Li
    Background: Hypoxia is associated with many disease conditions in humans, such as cancer, stroke and traumatic injuries. Hypoxia elicits broad molecular and cellular changes in diverse eukaryotes. Our recent studies suggest that one likely mechanism mediating such broad changes is through changes in the cellular localization of important regulatory proteins. Particularly, we have found that over 120 nuclear proteins with important functions ranging from transcriptional regulation to RNA processing exhibit altered cellular locations under hypoxia. In this report, we describe further experiments to identify and evaluate the role of nuclear protein relocalization in mediating hypoxia responses in yeast.Results: To identify regulatory proteins that play a causal role in mediating hypoxia responses, we characterized the time courses of relocalization of hypoxia-altered nuclear proteins in response to hypoxia and reoxygenation. We found that 17 nuclear proteins relocalized in a significantly shorter time period in response to both hypoxia and reoxygenation. Particularly, several components of the SWI/SNF complex were fast responders, and analysis of gene expression data show that many targets of the SWI/SNF proteins are oxygen regulated. Furthermore, confocal fluorescent live cell imaging showed that over 95% of hypoxia-altered SWI/SNF proteins accumulated in the cytosol in hypoxic cells, while over 95% of the proteins were nuclear in normoxic cells, as expected.Conclusions: SWI/SNF proteins relocalize in response to hypoxia and reoxygenation in a quick manner, and their relocalization likely accounts for, in part or in whole, oxygen regulation of many SWI/SNF target genes.

Works in Treasures @ UT Dallas are made available exclusively for educational purposes such as research or instruction. Literary rights, including copyright for published works held by the creator(s) or their heirs, or other third parties may apply. All rights are reserved unless otherwise indicated by the copyright owner(s).